A large and increasing number of countries use geothermal energy as power source for domestic and industrial applications. Geothermal power plants produce energy out of this natural and renewable source in a sustainable way and contribute to reduce global warming. However, power plants effectiveness depends on the suitability of an area to geothermal energy production, which is a complex and unknown combination of many environmental factors. Nowadays, geothermal suitability assessments require invasive inspections, high costs, and legal permissions. Thus, having a global suitability map of geothermal sites as reference would be useful prior knowledge during assessments, and would help saving time and money. In this paper, the first suitability map of potential geothermal sites at global scale is presented. The map is the result of the application of data collection and preparation processes, and a Maximum Entropy model, to geospatial data potentially correlated with geothermal site suitability and geothermal plants operation. The reliability of our map is assessed against currently active and planned geothermal power plants. Our approach follows the Open Science paradigm that guarantees results reproduction and transparency, and allows stakeholders to reuse the produced standardised data, services, and Web interfaces in other experiments or to generate new maps at regional scale. Overall, our results can help scientists, industry operators, and policy makers in geothermal sites assessments. Also, our approach supports communication with citizens whose territories are involved in probing and assessments, in order to transparently inform them about the reasons driving the selection of their territory and the potential future benefits.

Predicting geographical suitability of geothermal power plants

Coro G;Trumpy E
2020

Abstract

A large and increasing number of countries use geothermal energy as power source for domestic and industrial applications. Geothermal power plants produce energy out of this natural and renewable source in a sustainable way and contribute to reduce global warming. However, power plants effectiveness depends on the suitability of an area to geothermal energy production, which is a complex and unknown combination of many environmental factors. Nowadays, geothermal suitability assessments require invasive inspections, high costs, and legal permissions. Thus, having a global suitability map of geothermal sites as reference would be useful prior knowledge during assessments, and would help saving time and money. In this paper, the first suitability map of potential geothermal sites at global scale is presented. The map is the result of the application of data collection and preparation processes, and a Maximum Entropy model, to geospatial data potentially correlated with geothermal site suitability and geothermal plants operation. The reliability of our map is assessed against currently active and planned geothermal power plants. Our approach follows the Open Science paradigm that guarantees results reproduction and transparency, and allows stakeholders to reuse the produced standardised data, services, and Web interfaces in other experiments or to generate new maps at regional scale. Overall, our results can help scientists, industry operators, and policy makers in geothermal sites assessments. Also, our approach supports communication with citizens whose territories are involved in probing and assessments, in order to transparently inform them about the reasons driving the selection of their territory and the potential future benefits.
2020
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Geothermal energy
Artificial intelligence
Renewable energy
Environment
Machine learning
Spatial probability distributions
Open science
File in questo prodotto:
File Dimensione Formato  
prod_422186-doc_150069.pdf

accesso aperto

Descrizione: PreProof - Predicting_geographical_suitability_of_geothermal
Tipologia: Versione Editoriale (PDF)
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/383613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? ND
social impact