The process of photon-photon scattering in vacuum is investigated analytically in the long-wavelength limit within the framework of the Euler-Heisenberg Lagrangian. In order to solve the nonlinear partial differential equations (PDEs) obtained from this Lagrangian use is made of the hodograph transformation. This transformation makes it possible to turn a system of quasilinear PDEs into a system of linear PDEs. Exact solutions of the equations describing the nonlinear interaction of electromagnetic waves in vacuum in a one-dimensional configuration are obtained and analyzed.
Hodograph solutions of the wave equation of nonlinear electrodynamics in the quantum vacuum
Pegoraro Francesco;
2019
Abstract
The process of photon-photon scattering in vacuum is investigated analytically in the long-wavelength limit within the framework of the Euler-Heisenberg Lagrangian. In order to solve the nonlinear partial differential equations (PDEs) obtained from this Lagrangian use is made of the hodograph transformation. This transformation makes it possible to turn a system of quasilinear PDEs into a system of linear PDEs. Exact solutions of the equations describing the nonlinear interaction of electromagnetic waves in vacuum in a one-dimensional configuration are obtained and analyzed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.