Hypothesis: Multi-component supramolecular hydrogels are gaining increasing interest as stimuli-responsive materials. To fully understand and possibly exploit the potential of such complex systems, the hierarchical structure of the gel network needs in-depth investigations across multiple length scales. We show that a thorough structural and rheological study represents a crucial pillar for the exploitation of this class of functional materials. Experiments: Supramolecular hydrogels are prepared by self-assembly of hexadecyltrimethylammonium bromide (CTAB) and azobenzene-4,4?-dicarboxylic acid (AZO) in alkaline aqueous solution. The CTAB/AZO concentration was varied from ? = 0.25 to 4 wt% keeping the CTAB:AZO molar ratio fixed at 2:1. The systems were thoroughly studied through a combination of X-ray scattering, microscopy, rheological and spectroscopic analyses. Findings: The CTAB/AZO solutions form a self-supporting gel with nanofibrillar structure below ~30 °C. The critical gelation concentration is ? = 0.45 wt%. Above this threshold, the gel elasticity and strength increase with CTAB/AZO content as ~(?-?). The hydrogels exhibit self-healing ability when left at rest after a stress-induced damage. Moreover, the light-induced isomerization of the AZO moieties provides the gel with light-responsiveness. Overall, the multi-stimuli responsiveness of the studied CTAB/AZO hydrogels makes them a solid starting point for the development of sensors for mechanical vibrations and UV/visible light exposure.
Light-responsive and self-healing behavior of azobenzene-based supramolecular hydrogels
Marturano Valentina;Santillo Chiara;Cerruti Pierfrancesco
2020
Abstract
Hypothesis: Multi-component supramolecular hydrogels are gaining increasing interest as stimuli-responsive materials. To fully understand and possibly exploit the potential of such complex systems, the hierarchical structure of the gel network needs in-depth investigations across multiple length scales. We show that a thorough structural and rheological study represents a crucial pillar for the exploitation of this class of functional materials. Experiments: Supramolecular hydrogels are prepared by self-assembly of hexadecyltrimethylammonium bromide (CTAB) and azobenzene-4,4?-dicarboxylic acid (AZO) in alkaline aqueous solution. The CTAB/AZO concentration was varied from ? = 0.25 to 4 wt% keeping the CTAB:AZO molar ratio fixed at 2:1. The systems were thoroughly studied through a combination of X-ray scattering, microscopy, rheological and spectroscopic analyses. Findings: The CTAB/AZO solutions form a self-supporting gel with nanofibrillar structure below ~30 °C. The critical gelation concentration is ? = 0.45 wt%. Above this threshold, the gel elasticity and strength increase with CTAB/AZO content as ~(?-?). The hydrogels exhibit self-healing ability when left at rest after a stress-induced damage. Moreover, the light-induced isomerization of the AZO moieties provides the gel with light-responsiveness. Overall, the multi-stimuli responsiveness of the studied CTAB/AZO hydrogels makes them a solid starting point for the development of sensors for mechanical vibrations and UV/visible light exposure.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0021979720301843-main.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Revised manuscript.docx
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
3.41 MB
Formato
Microsoft Word XML
|
3.41 MB | Microsoft Word XML | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.