Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evolved gases are measured by means of chromatography (gas composition and release rate) and a proportional gas flow detector (tritium). Results for the tritium profiles in neutron irradiated, plasma exposed and gas loaded beryllium are reported.

Novel method for determination of tritium depth profiles in metallic samples

Alessi E;Brombin M;Carraro L;Gervasini G;Innocente P;Laguardia L;Lazzaro E;Marchetto C;Murari A;Muraro A;Paccagnella R;Pasqualotto R;Pomaro N;Puiatti M E;Sozzi C;Tardocchi M;Terranova D;Uccello A;Vianello N;
2019

Abstract

Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evolved gases are measured by means of chromatography (gas composition and release rate) and a proportional gas flow detector (tritium). Results for the tritium profiles in neutron irradiated, plasma exposed and gas loaded beryllium are reported.
2019
Istituto di fisica del plasma - IFP - Sede Milano
Istituto gas ionizzati - IGI - Sede Padova
Istituto dei Sistemi Complessi - ISC
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
tritium
depth profile
fusion
first wall
breeding blanket
beryllium
File in questo prodotto:
File Dimensione Formato  
prod_431363-doc_154269.pdf

solo utenti autorizzati

Descrizione: Novel method for determination of tritium depth profiles in metallic samples
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/383801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact