Microelectromechanical systems and integrated photonics provide the basis for many reliable and compact circuit elements in modern communication systems. Electro-opto-mechanical devices are currently one of the leading approaches to realize ultra-sensitive, low-loss transducers for an emerging quantum information technology. Here we present an on-chip microwave frequency converter based on a planar aluminum on silicon nitride platform that is compatible with slot-mode coupled photonic crystal cavities. We show efficient frequency conversion between two propagating microwave modes mediated by the radiation pressure interaction with a metalized dielectric nanobeam oscillator. We achieve bidirectional coherent conversion with a total device efficiency of up to ~ 60%, a dynamic range of 2 × 109 photons/s and an instantaneous bandwidth of up to 1.7 kHz. A high fidelity quantum state transfer would be possible if the drive dependent output noise of currently ~ 14 photons · s-1· Hz-1 is further reduced. Such a silicon nitride based transducer is in-situ reconfigurable and could be used for on-chip classical and quantum signal routing and filtering, both for microwave and hybrid microwave-optical applications.
Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator
Pitanti A;
2020
Abstract
Microelectromechanical systems and integrated photonics provide the basis for many reliable and compact circuit elements in modern communication systems. Electro-opto-mechanical devices are currently one of the leading approaches to realize ultra-sensitive, low-loss transducers for an emerging quantum information technology. Here we present an on-chip microwave frequency converter based on a planar aluminum on silicon nitride platform that is compatible with slot-mode coupled photonic crystal cavities. We show efficient frequency conversion between two propagating microwave modes mediated by the radiation pressure interaction with a metalized dielectric nanobeam oscillator. We achieve bidirectional coherent conversion with a total device efficiency of up to ~ 60%, a dynamic range of 2 × 109 photons/s and an instantaneous bandwidth of up to 1.7 kHz. A high fidelity quantum state transfer would be possible if the drive dependent output noise of currently ~ 14 photons · s-1· Hz-1 is further reduced. Such a silicon nitride based transducer is in-situ reconfigurable and could be used for on-chip classical and quantum signal routing and filtering, both for microwave and hybrid microwave-optical applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


