The relative role of density-dependent and density-independent variation in vital rates and population size remains largely unsolved. Despite its importance to the theory and application of population ecology, and to conservation biology, quantifying the role and strength of density dependence is particularly challenging. We present a hierarchical formulation of the temporal symmetry approach, also known as the Pradel model, that permits estimation of the strength of density dependence from capture-mark-reencounter data. A measure of relative population size is built in the model and serves to detect density dependence directly on population growth rate. The model is also extended to account for temporal random variability in demographic rates, allowing estimation of the temporal variance of population growth rate unexplained by density dependence. We thus present a model-based approach that enable to test and quantify the effect of density-dependent and density-independent factors affecting population fluctuations in a single modeling framework. More generally, we use this modeling framework along with simulated and empirical data to show the value of including density dependence when modeling individual encounter data without the need for auxiliary data.

Assessing the effect of density on population growth when modeling individual encounter data.

Tenan Simone;
2019

Abstract

The relative role of density-dependent and density-independent variation in vital rates and population size remains largely unsolved. Despite its importance to the theory and application of population ecology, and to conservation biology, quantifying the role and strength of density dependence is particularly challenging. We present a hierarchical formulation of the temporal symmetry approach, also known as the Pradel model, that permits estimation of the strength of density dependence from capture-mark-reencounter data. A measure of relative population size is built in the model and serves to detect density dependence directly on population growth rate. The model is also extended to account for temporal random variability in demographic rates, allowing estimation of the temporal variance of population growth rate unexplained by density dependence. We thus present a model-based approach that enable to test and quantify the effect of density-dependent and density-independent factors affecting population fluctuations in a single modeling framework. More generally, we use this modeling framework along with simulated and empirical data to show the value of including density dependence when modeling individual encounter data without the need for auxiliary data.
2019
Istituto di Scienze Marine - ISMAR
Audouin's Gull
capture-recapture
Gibbs variable selection
open population estimation
population dynamics
Pradel model
rate of population change
temporal symmetry model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/383975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact