The conservation of wildlife requires management based on quantitative evidence, and especially for large carnivores, unraveling cause-specific mortalities and understanding their impact on population dynamics is crucial. Acquiring this knowledge is challenging because it is difficult to obtain robust long-term data sets on endangered populations and, usually, data are collected through diverse sampling strategies. Integrated population models (IPMs) offer a way to integrate data generated through different processes. However, IPMs are female-based models that cannot account for mate availability, and this feature limits their applicability to monogamous species only. We extended classical IPMs to a two-sex framework that allows investigation of population dynamics and quantification of cause-specific mortality rates in nonmonogamous species. We illustrated our approach by simultaneously modeling different types of data from a reintroduced, unhunted brown bear (Ursus arctos) population living in an area with a dense human population. In a population mainly driven by adult survival, we estimated that on average 11% of cubs and 61% of adults died from human-related causes. Although the population is currently not at risk, adult survival and thus population dynamics are driven by anthropogenic mortality. Given the recent increase of human-bear conflicts in the area, removal of individuals for management purposes and through poaching may increase, reversing the positive population growth rate. Our approach can be generalized to other species affected by cause-specific mortality and will be useful to inform conservation decisions for other nonmonogamous species, such as most large carnivores, for which data are scarce and diverse and thus data integration is highly desirable.

Evaluating mortality rates with a novel integrated framework for nonmonogamous species

Tenan Simone;
2016

Abstract

The conservation of wildlife requires management based on quantitative evidence, and especially for large carnivores, unraveling cause-specific mortalities and understanding their impact on population dynamics is crucial. Acquiring this knowledge is challenging because it is difficult to obtain robust long-term data sets on endangered populations and, usually, data are collected through diverse sampling strategies. Integrated population models (IPMs) offer a way to integrate data generated through different processes. However, IPMs are female-based models that cannot account for mate availability, and this feature limits their applicability to monogamous species only. We extended classical IPMs to a two-sex framework that allows investigation of population dynamics and quantification of cause-specific mortality rates in nonmonogamous species. We illustrated our approach by simultaneously modeling different types of data from a reintroduced, unhunted brown bear (Ursus arctos) population living in an area with a dense human population. In a population mainly driven by adult survival, we estimated that on average 11% of cubs and 61% of adults died from human-related causes. Although the population is currently not at risk, adult survival and thus population dynamics are driven by anthropogenic mortality. Given the recent increase of human-bear conflicts in the area, removal of individuals for management purposes and through poaching may increase, reversing the positive population growth rate. Our approach can be generalized to other species affected by cause-specific mortality and will be useful to inform conservation decisions for other nonmonogamous species, such as most large carnivores, for which data are scarce and diverse and thus data integration is highly desirable.
2016
Istituto di Scienze Marine - ISMAR
hierarchical modeling
human-wildlife conflict
integrated population model
large carnivore
mortality rate
population ecology
two-sex model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/383987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
social impact