The aim of this paper is to study the compressive behavior of a typical aeronautical epoxy composite matrix filled with silica nanoparticles at high strain rates. The weight percentage of the silica nanoparticles was 1% of the epoxy resin and the average size of the nanoparticles was approx. 800 nm, as measured by SEM image analysis. Reference quasi-static experiments (at strain rates 0.0008, 0.008, and 0.08 s) and high strain rate experiments (up to 1050 s) were carried out using both neat and silica nanoparticle filled epoxy resins. Results showed that the addition of silica nanoparticles improved the compressive yield strength and reduced the maximum strain of the epoxy resin at quasi-static and high strain rates. In addition, results revealed that strain rate sensitivity at higher strain rates was also negatively affected.. The effect of strain rate on the compressive yield strength of silica nanoparticles filled epoxy reasonably followed a power law, which is characterised by a strain rate exponent value of approx. 0.0227.

Compressive behavior of epoxy resin filled with silica nanoparticles at high strain rate

Zarrelli Mauro;Zotti Aldobenedetto;Zuppolini Simona;Borriello Anna;
2020

Abstract

The aim of this paper is to study the compressive behavior of a typical aeronautical epoxy composite matrix filled with silica nanoparticles at high strain rates. The weight percentage of the silica nanoparticles was 1% of the epoxy resin and the average size of the nanoparticles was approx. 800 nm, as measured by SEM image analysis. Reference quasi-static experiments (at strain rates 0.0008, 0.008, and 0.08 s) and high strain rate experiments (up to 1050 s) were carried out using both neat and silica nanoparticle filled epoxy resins. Results showed that the addition of silica nanoparticles improved the compressive yield strength and reduced the maximum strain of the epoxy resin at quasi-static and high strain rates. In addition, results revealed that strain rate sensitivity at higher strain rates was also negatively affected.. The effect of strain rate on the compressive yield strength of silica nanoparticles filled epoxy reasonably followed a power law, which is characterised by a strain rate exponent value of approx. 0.0227.
2020
9781510896932
Epoxy resin
High strain rate
Silica nanoparticles
Split Hopkinson bar
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/384254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact