This work presents a multi-sensor platform integrating one or more commercial low-cost ambient sensors and one wearable device for the automatic assessment of the physical activity and sedentary time of an aged person. Each sensor node could operate in a stand-alone way or in a multi-sensor approach; in the last case, fuzzy logic data fusion techniques are implemented in a gateway in order to improve the robustness of the estimation of a physiological measure characterizing the level of physical activity and specific parameters for the quantification of a sedentary lifestyle. The automatic assessment was conducted through two main algorithmic steps: (1) recognition of well-defined set of human activities, detected by ambient and wearable sensor nodes, and (2) estimation of a physiological measure, that is (MET)-minutes. The overall accuracy for activity recognition, obtained using simultaneously ambient and wearable sensors data, is about 5% higher of single sub-system and about 2% higher of that obtained with more than one ambient sensor. The effectiveness of the platform is demonstrated by the relative error between IPAQ-SF score (used as ground-truth, in which a low score corresponds to a sedentary lifestyle whereas a high score refers to moderate-to-vigorous activity level) and average measured (MET)-minutes obtained by both sensor technologies (after data fusion step), which never exceeds 7%, thus confirming the advantage of data fusion procedure for different aged people used for validation.

Multi-sensor platform for automatic assessment of physical activity of older adults

Caroppo Andrea;Leone Alessandro;Siciliano Pietro
2019

Abstract

This work presents a multi-sensor platform integrating one or more commercial low-cost ambient sensors and one wearable device for the automatic assessment of the physical activity and sedentary time of an aged person. Each sensor node could operate in a stand-alone way or in a multi-sensor approach; in the last case, fuzzy logic data fusion techniques are implemented in a gateway in order to improve the robustness of the estimation of a physiological measure characterizing the level of physical activity and specific parameters for the quantification of a sedentary lifestyle. The automatic assessment was conducted through two main algorithmic steps: (1) recognition of well-defined set of human activities, detected by ambient and wearable sensor nodes, and (2) estimation of a physiological measure, that is (MET)-minutes. The overall accuracy for activity recognition, obtained using simultaneously ambient and wearable sensors data, is about 5% higher of single sub-system and about 2% higher of that obtained with more than one ambient sensor. The effectiveness of the platform is demonstrated by the relative error between IPAQ-SF score (used as ground-truth, in which a low score corresponds to a sedentary lifestyle whereas a high score refers to moderate-to-vigorous activity level) and average measured (MET)-minutes obtained by both sensor technologies (after data fusion step), which never exceeds 7%, thus confirming the advantage of data fusion procedure for different aged people used for validation.
2019
Istituto per la Microelettronica e Microsistemi - IMM
9783030043230
Ambient assisted living
Ambient sensor
Human activity recognition
Intelligent environments
Wearable sensor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/384283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact