Effective treatment of glioma and other central nervous system (CNS) diseases is hindered by the presence of the blood-brain barrier (BBB). A novel nano-delivery vehicle system composed of PLGA-lysoGM1/DOX micelles was developed to cross the BBB for CNS treatment. We have shown that doxorubicin (DOX) as a model drug encapsulated in PLGA-lysoGM1 micelles can achieve up to 3.8% loading efficiency and 61.6% encapsulation efficiency by the orthogonal test design. Our in vitro experiments demonstrated that PLGA-lysoGM1/DOX micelles had a slow and sustainable drug release under physiological conditions and exhibited a high cellular uptake through the macropinocytosis and the autophagy/lysosomal pathways. In vivo experimental studies in zebrafish and mice confirmed that PLGA-lysoGM1/DOX micelles could cross the BBB and be specifically accumulated in the brain. Moreover, an excellent anti-glioma effect was observed in intracranial glioma-bearing rats. Therefore, PLGA-lysoGM1/DOX micelles not only effectively can cross the BBB, but our results also suggest that they have great potential for anti-glioma therapy and other central nervous system diseases.

Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system

Pontrelli Giuseppe;
2020

Abstract

Effective treatment of glioma and other central nervous system (CNS) diseases is hindered by the presence of the blood-brain barrier (BBB). A novel nano-delivery vehicle system composed of PLGA-lysoGM1/DOX micelles was developed to cross the BBB for CNS treatment. We have shown that doxorubicin (DOX) as a model drug encapsulated in PLGA-lysoGM1 micelles can achieve up to 3.8% loading efficiency and 61.6% encapsulation efficiency by the orthogonal test design. Our in vitro experiments demonstrated that PLGA-lysoGM1/DOX micelles had a slow and sustainable drug release under physiological conditions and exhibited a high cellular uptake through the macropinocytosis and the autophagy/lysosomal pathways. In vivo experimental studies in zebrafish and mice confirmed that PLGA-lysoGM1/DOX micelles could cross the BBB and be specifically accumulated in the brain. Moreover, an excellent anti-glioma effect was observed in intracranial glioma-bearing rats. Therefore, PLGA-lysoGM1/DOX micelles not only effectively can cross the BBB, but our results also suggest that they have great potential for anti-glioma therapy and other central nervous system diseases.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
drug delivery
mathematical modelling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/384420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact