Understanding and modeling the dynamics of multiscale systems is a problem of considerable interest both for theory and applications. For unavoidable practical reasons, in multiscale systems, there is the need to eliminate from the description the fast and small-scale degrees of freedom and thus build effective models for only the slow and large-scale degrees of freedom. When there is a wide scale separation between the degrees of freedom, asymptotic techniques, such as the adiabatic approximation, can be used for devising such effective models, while away from this limit there exist no systematic techniques. Here, we scrutinize the use of machine learning, based on reservoir computing, to build data-driven effective models of multiscale chaotic systems. We show that, for a wide scale separation, machine learning generates effective models akin to those obtained using multiscale asymptotic techniques and, remarkably, remains effective in predictability also when the scale separation is reduced. We also show that predictability can be improved by hybridizing the reservoir with an imperfect model.

Effective models and predictability of chaotic multiscale systems via machine learning

Cencini M.
2020

Abstract

Understanding and modeling the dynamics of multiscale systems is a problem of considerable interest both for theory and applications. For unavoidable practical reasons, in multiscale systems, there is the need to eliminate from the description the fast and small-scale degrees of freedom and thus build effective models for only the slow and large-scale degrees of freedom. When there is a wide scale separation between the degrees of freedom, asymptotic techniques, such as the adiabatic approximation, can be used for devising such effective models, while away from this limit there exist no systematic techniques. Here, we scrutinize the use of machine learning, based on reservoir computing, to build data-driven effective models of multiscale chaotic systems. We show that, for a wide scale separation, machine learning generates effective models akin to those obtained using multiscale asymptotic techniques and, remarkably, remains effective in predictability also when the scale separation is reduced. We also show that predictability can be improved by hybridizing the reservoir with an imperfect model.
2020
Istituto dei Sistemi Complessi - ISC
reservoir computing
multiscale systems
predictability
chaotic systems
File in questo prodotto:
File Dimensione Formato  
prod_437678-doc_162038.pdf

solo utenti autorizzati

Descrizione: Effective models and predictability of chaotic multiscale systems via machine learning
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Borra_etal_PRE2020.pdf

accesso aperto

Descrizione: Effective models and predictability of chaotic multiscale systems via machine learning
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/384515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact