Using spray-dried powders is widely consolidated in ceramic production, especially for porcelain stoneware tiles and slabs. However, a novel micro-granulation process can reduce the consumption of water and energy. It is based on wetting-agglomeration-drying operations that can be managed either as dry (dry-milled powders, micro-granulation) or hybrid route (wet-milled slurry and dry-milled powders, micro-granulation). The goal is to compare these new dry and hybrid micro-granulates with conventional spray-dried and dry-granulated powders by determining: grain size, shape and moisture distribution; static and dynamic angles of repose; poured and tap density, Hausner ratio; mass flow rate; compaction response; microstructure, pore size distribution and yield strength. The new micro-granulates exhibit improved rheological performances, approaching under some manufacturing conditions those of spray-dried powders, particularly in case of the hybrid route. Differences persist in compaction behavior: this is the consequence of distinct microstructure, porosity and stiffness of spray-dried agglomerates and dry/hybrid micro-granules.

Powder rheology and compaction behavior of novel micro-granulates for ceramic tiles

Soldati R
Primo
;
Zanelli C
Secondo
;
Guarini G;Melandri C;Piancastelli A;Dondi M
Ultimo
2020

Abstract

Using spray-dried powders is widely consolidated in ceramic production, especially for porcelain stoneware tiles and slabs. However, a novel micro-granulation process can reduce the consumption of water and energy. It is based on wetting-agglomeration-drying operations that can be managed either as dry (dry-milled powders, micro-granulation) or hybrid route (wet-milled slurry and dry-milled powders, micro-granulation). The goal is to compare these new dry and hybrid micro-granulates with conventional spray-dried and dry-granulated powders by determining: grain size, shape and moisture distribution; static and dynamic angles of repose; poured and tap density, Hausner ratio; mass flow rate; compaction response; microstructure, pore size distribution and yield strength. The new micro-granulates exhibit improved rheological performances, approaching under some manufacturing conditions those of spray-dried powders, particularly in case of the hybrid route. Differences persist in compaction behavior: this is the consequence of distinct microstructure, porosity and stiffness of spray-dried agglomerates and dry/hybrid micro-granules.
2020
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Dry granulation
Hybrid route
Powder compaction
Powder rheology
File in questo prodotto:
File Dimensione Formato  
352-Migratech-PT2020.pdf

solo utenti autorizzati

Descrizione: Soldati R., Zanelli C., Cavani G., Battaglioli L., Guarini G., Melandri C., Piancastelli A., Dondi M., Powder rheology and compaction behaviour of novel micro-granulates for ceramic tiles. Powder Technology, 374 (2020) 111-120.
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/384711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact