By breaking the diffraction limit, plasmonics enable the miniaturization of integrated optical signal processing units in a platform compatible with traditional CMOS technology. In such architectures, modulators and switches are essential elements for fast and low-power optical signal processing. This work presents the design of a CMOS-compatible hybrid plasmonic modulator based on directional couplers enhanced with a layer of electro-optic polymer. The modulator shows very broad operating window with low crosstalk values and very small footprint with respect to similar couplers and switches of the silicon photonics platform.
Hybrid electro-optic plasmonic modulators based on directional coupler switches
Zografopoulos Dimitrios C;Beccherelli Romeo
2016
Abstract
By breaking the diffraction limit, plasmonics enable the miniaturization of integrated optical signal processing units in a platform compatible with traditional CMOS technology. In such architectures, modulators and switches are essential elements for fast and low-power optical signal processing. This work presents the design of a CMOS-compatible hybrid plasmonic modulator based on directional couplers enhanced with a layer of electro-optic polymer. The modulator shows very broad operating window with low crosstalk values and very small footprint with respect to similar couplers and switches of the silicon photonics platform.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


