A computational approach that couples molecular-dynamics (MD) and the-finite-element-method (FEM) technique is here proposed for the theoretical study of the dynamics of particles subjected to electromechanical forces. The system consists of spherical particles (modeled as micrometric rigid bodies with proper densities and dielectric functions) suspended in a colloidal solution, which flows in a microfluidic channel in the presence of a generic nonuniform variable electric field generated by electrodes. The particles are subjected to external forces (e.g., drag or gravity) which satisfy a particlelike formulation that is typical of the MD approach, along with an electromechanical force that, in turn, requires the three-dimensional self-consistent solutions of correct continuum field equations during the integration of the equations of motion. In the MD-FEM method used in this work, the finite element method is applied to solve the continuum field equations while the MD technique is used for the stepwise explicit integration of the equations of motion. Our work shows the potential of coupled MD-FEM simulations for the study of electromechanical particles and opens a double perspective for implementing (a) MD away from the field of atomistic simulations and (b) the continuum-particle approach to cases where the conventional force evaluation used in MD is not applicable.

Coupled molecular-dynamics and finite-element-method simulations for the kinetics of particles subjected to field-mediated forces

Deretzis;Ioannis;Antonino;La Magna;Antonino
2019

Abstract

A computational approach that couples molecular-dynamics (MD) and the-finite-element-method (FEM) technique is here proposed for the theoretical study of the dynamics of particles subjected to electromechanical forces. The system consists of spherical particles (modeled as micrometric rigid bodies with proper densities and dielectric functions) suspended in a colloidal solution, which flows in a microfluidic channel in the presence of a generic nonuniform variable electric field generated by electrodes. The particles are subjected to external forces (e.g., drag or gravity) which satisfy a particlelike formulation that is typical of the MD approach, along with an electromechanical force that, in turn, requires the three-dimensional self-consistent solutions of correct continuum field equations during the integration of the equations of motion. In the MD-FEM method used in this work, the finite element method is applied to solve the continuum field equations while the MD technique is used for the stepwise explicit integration of the equations of motion. Our work shows the potential of coupled MD-FEM simulations for the study of electromechanical particles and opens a double perspective for implementing (a) MD away from the field of atomistic simulations and (b) the continuum-particle approach to cases where the conventional force evaluation used in MD is not applicable.
2019
electromechanical forces
molecular-dynamics
finite-element-method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact