To study the effectiveness of 1,2-dihydroxyphenyl moieties in inducing electrocatalytic oxidation of NADH, we combined standard voltammetric techniques with UV-Vis absorption spectroelectrochemistry, which allowed us to measure the variations in composition occurring at the electrode vertical bar solution interface, i.e. to measure the consumption rate of NADH.

We describe a nanocomposite material for the electrochemical detection of beta-nicotinamide adenine dinucleotide (NADH), a coenzyme involved in redox reactions of all living cells and in the detection of many organic species by electrochemical biosensors. The composite is made of nanosheets of electrochemically exfoliated graphene oxide (EGO) covalently functionalized with dopamine (DP) molecules. The EGODP material finally obtained is rich of 1,2-dihydroxyphenyl moieties and is able to detect NADH at a particular low potential value with higher sensitivity with respect to pristine EGO.

Dopamine-functionalized graphene oxide as a high-performance material for biosensing

Kovtun Alessandro;Bettini Cristian;Xia Zhenyuan;Liscio Andrea;Melucci Manuela;Palermo Vincenzo;Zanardi Chiara
2020

Abstract

We describe a nanocomposite material for the electrochemical detection of beta-nicotinamide adenine dinucleotide (NADH), a coenzyme involved in redox reactions of all living cells and in the detection of many organic species by electrochemical biosensors. The composite is made of nanosheets of electrochemically exfoliated graphene oxide (EGO) covalently functionalized with dopamine (DP) molecules. The EGODP material finally obtained is rich of 1,2-dihydroxyphenyl moieties and is able to detect NADH at a particular low potential value with higher sensitivity with respect to pristine EGO.
2020
Istituto per la Microelettronica e Microsistemi - IMM
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
To study the effectiveness of 1,2-dihydroxyphenyl moieties in inducing electrocatalytic oxidation of NADH, we combined standard voltammetric techniques with UV-Vis absorption spectroelectrochemistry, which allowed us to measure the variations in composition occurring at the electrode vertical bar solution interface, i.e. to measure the consumption rate of NADH.
graphene oxide
spectroelectrochemistry
NADH
chemical functionalization
1,2-dihydroxyphenyl moieties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact