Background/Aims We aimed to explore the effects of hepatitis C virus (HCV) core and NS5A proteins on reactive oxygen (ROS) and nitrogen species (RNS) formation and on gene expression profile of iNOS in human hepatocyte-derived cells. Methods Production of ROS and RNS and nitrotyrosine residues accumulation were determined by flow cytometry and fluorescent microscopy as well as by Western blot, respectively, in NS5A- and core-transfected cells. Northern blot, Western blot, real-time PCR, and luciferase assays were used to assess iNOS gene expression in both transfectants. Results Cytokine-activated NS5A- and core-transfected cells induced ROS and RNS production but an earlier and more marked increase was observed in NS5A-expressing cells. Superoxide production was also augmented, showing a similar temporal pattern of appearance in both NS5A- and core-transfected cells. Although both NS5A and core HCV proteins were able to up-regulate iNOS gene expression, accompanied by a nitrotyrosine-containing proteins accumulation, an earlier iNOS overexpression was observed in NS5A-expressing cells, suggesting a different time course of iNOS activation pattern for core and NS5A HCV proteins. Conclusions Our results indicate a differential contribution of both HCV proteins to oxidative and nitrosative stress generation.

Differential contribution of hepatitis C virus NS5A and core proteins to the induction of oxidative and nitrosative stress in human hepatocyte-derived cells

2005

Abstract

Background/Aims We aimed to explore the effects of hepatitis C virus (HCV) core and NS5A proteins on reactive oxygen (ROS) and nitrogen species (RNS) formation and on gene expression profile of iNOS in human hepatocyte-derived cells. Methods Production of ROS and RNS and nitrotyrosine residues accumulation were determined by flow cytometry and fluorescent microscopy as well as by Western blot, respectively, in NS5A- and core-transfected cells. Northern blot, Western blot, real-time PCR, and luciferase assays were used to assess iNOS gene expression in both transfectants. Results Cytokine-activated NS5A- and core-transfected cells induced ROS and RNS production but an earlier and more marked increase was observed in NS5A-expressing cells. Superoxide production was also augmented, showing a similar temporal pattern of appearance in both NS5A- and core-transfected cells. Although both NS5A and core HCV proteins were able to up-regulate iNOS gene expression, accompanied by a nitrotyrosine-containing proteins accumulation, an earlier iNOS overexpression was observed in NS5A-expressing cells, suggesting a different time course of iNOS activation pattern for core and NS5A HCV proteins. Conclusions Our results indicate a differential contribution of both HCV proteins to oxidative and nitrosative stress generation.
2005
Hepatitis C virus
NS5A protein
Core protein
Oxidative/nitrosative stress
Inducible nitric oxide synthase
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 68
social impact