Control over the film-substrate interaction is key to the exploitation of graphene's unique electronic properties. Typically, a buffer layer is irreversibly intercalated "from above" to ensure decoupling. For graphene/Ni(111) we instead tune the film interaction "from below". By temperature controlling the formation/dissolution of a carbide layer under rotated graphene domains, we reversibly switch graphene's electronic structure from semi-metallic to metallic. Our results are relevant for the design of controllable graphene/metal interfaces in functional devices

Switchable graphene-substrate coupling through formation/dissolution of an intercalated Ni-carbide layer

Africh;Cepek;Patera;Ae;Ae;Comelli;
2016

Abstract

Control over the film-substrate interaction is key to the exploitation of graphene's unique electronic properties. Typically, a buffer layer is irreversibly intercalated "from above" to ensure decoupling. For graphene/Ni(111) we instead tune the film interaction "from below". By temperature controlling the formation/dissolution of a carbide layer under rotated graphene domains, we reversibly switch graphene's electronic structure from semi-metallic to metallic. Our results are relevant for the design of controllable graphene/metal interfaces in functional devices
2016
Istituto Officina dei Materiali - IOM -
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact