Intermittent rivers are prevalent in many countries across Europe, but little is known about the temporal evolution of intermittence and its relationship with climate variability. Trend analysis of the annual and seasonal number of zero-flow days, the maximum duration of dry spells and the mean date of the zero-flow events, is performed on a database of 452 rivers with varying degrees of intermittence between 1970 and 2010. The relationships between flow intermittence and climate are investigated using the standardized precipitation evapotranspiration index (SPEI) and climate indices describing large-scale atmospheric circulation. The results indicate a strong spatial variability of the seasonal patterns of intermittence and the annual and seasonal number of zero-flow days, highlighting the controls exerted by local catchment properties. Most of the detected trends indicate an increasing number of zero-flow days, which also tend to occur earlier in the year, particularly in southern Europe. The SPEI is found to be strongly related to the annual and seasonal zero-flow day occurrence in more than half of the stations for different accumulation times between 12 and 24 months. Conversely, there is a weaker dependence of river intermittence with large-scale circulation indices. Overall, these results suggest increased water stress in intermittent rivers that may affect their biota and biochemistry and also reduce available water resources.

Trends in flow intermittence for European rivers

Luca Brocca;Stefania Camici;
2021

Abstract

Intermittent rivers are prevalent in many countries across Europe, but little is known about the temporal evolution of intermittence and its relationship with climate variability. Trend analysis of the annual and seasonal number of zero-flow days, the maximum duration of dry spells and the mean date of the zero-flow events, is performed on a database of 452 rivers with varying degrees of intermittence between 1970 and 2010. The relationships between flow intermittence and climate are investigated using the standardized precipitation evapotranspiration index (SPEI) and climate indices describing large-scale atmospheric circulation. The results indicate a strong spatial variability of the seasonal patterns of intermittence and the annual and seasonal number of zero-flow days, highlighting the controls exerted by local catchment properties. Most of the detected trends indicate an increasing number of zero-flow days, which also tend to occur earlier in the year, particularly in southern Europe. The SPEI is found to be strongly related to the annual and seasonal zero-flow day occurrence in more than half of the stations for different accumulation times between 12 and 24 months. Conversely, there is a weaker dependence of river intermittence with large-scale circulation indices. Overall, these results suggest increased water stress in intermittent rivers that may affect their biota and biochemistry and also reduce available water resources.
2021
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
Istituto di Ricerca Sulle Acque - IRSA
Europeintermittent
ephemeral
rivers
trends
SPEI
seasonality
zero flows
File in questo prodotto:
File Dimensione Formato  
prod_438326-doc_157141.pdf

solo utenti autorizzati

Descrizione: Trends in flow intermittence for European rivers
Tipologia: Documento in Pre-print
Dimensione 5.08 MB
Formato Adobe PDF
5.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact