Observing mobile or static targets in the ground using flying drones is a common task for civilian and military applications. We introduce the minimum cost drone location problem and its solutions for this task in a two-dimensional terrain. The number of drones and the total energy consumption are the two cost metrics considered. We assume that each drone has a minimum and a maximum observation altitude. Moreover, the drone's energy consumption is related to this altitude. Indeed, the higher the altitude, the larger the observed area but the higher the energy consumption. The aim is to find drone locations that minimize the cost while ensuring the surveillance of all the targets. The problem is mathematically solved by defining an integer linear and a mixed integer non-linear optimization models. We also provide some centralized and localized heuristics to approximate the solution for static and mobile targets. A computational study and extensive simulations are carried out to assess the behavior of the proposed solutions.

Optimal drone placement and cost-efficient target coverage

Di Puglia Pugliese Luigi;
2016

Abstract

Observing mobile or static targets in the ground using flying drones is a common task for civilian and military applications. We introduce the minimum cost drone location problem and its solutions for this task in a two-dimensional terrain. The number of drones and the total energy consumption are the two cost metrics considered. We assume that each drone has a minimum and a maximum observation altitude. Moreover, the drone's energy consumption is related to this altitude. Indeed, the higher the altitude, the larger the observed area but the higher the energy consumption. The aim is to find drone locations that minimize the cost while ensuring the surveillance of all the targets. The problem is mathematically solved by defining an integer linear and a mixed integer non-linear optimization models. We also provide some centralized and localized heuristics to approximate the solution for static and mobile targets. A computational study and extensive simulations are carried out to assess the behavior of the proposed solutions.
2016
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
2-Dimensional space
Drones
Energy efficiency
Optimization
Target coverage
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 123
  • ???jsp.display-item.citation.isi??? ND
social impact