Initially emerged in the Chinese city Wuhan and subsequently spread almost worldwide causing a pandemic, the SARS-CoV-2 virus follows reasonably well the Susceptible-Infectious-Recovered (SIR) epidemic model on contact networks in the Chinese case. In this paper, we investigate the prediction accuracy of the SIR model on networks also for Italy. Specifically, the Italian regions are a metapopulation represented by network nodes and the network links are the interactions between those regions. Then, we modify the network-based SIR model in order to take into account the different lockdown measures adopted by the Italian Government in the various phases of the spreading of the COVID-19. Our results indicate that the network-based model better predicts the daily cumulative infected individuals when time-varying lockdown protocols are incorporated in the classical SIR model.

Network-based prediction of COVID-19 epidemic spreading in Italy

Pizzuti C;Socievole A
;
2020

Abstract

Initially emerged in the Chinese city Wuhan and subsequently spread almost worldwide causing a pandemic, the SARS-CoV-2 virus follows reasonably well the Susceptible-Infectious-Recovered (SIR) epidemic model on contact networks in the Chinese case. In this paper, we investigate the prediction accuracy of the SIR model on networks also for Italy. Specifically, the Italian regions are a metapopulation represented by network nodes and the network links are the interactions between those regions. Then, we modify the network-based SIR model in order to take into account the different lockdown measures adopted by the Italian Government in the various phases of the spreading of the COVID-19. Our results indicate that the network-based model better predicts the daily cumulative infected individuals when time-varying lockdown protocols are incorporated in the classical SIR model.
2020
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
COVID-19
epidemic s
networks
prediction
File in questo prodotto:
File Dimensione Formato  
Covid19.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact