Astrocytes provide metabolic support for neurons and modulate their functions by releasing a plethora of neuroactive molecules diffusing to neighboring cells. Here we report that astrocytes also play a role in cortical neurons' vulnerability to Herpes simplex virus type-1 (HSV-1) infection through the release of extracellular ATP. We found that the interaction of HSV-1 with heparan sulfate proteoglycans expressed on the plasma membrane of astrocytes triggered phospholipase C-mediated IP3-dependent intracellular Ca(2+)transients causing extracellular release of ATP. ATP binds membrane purinergic P2 receptors (P2Rs) of both neurons and astrocytes causing an increase in intracellular Ca(2+)concentration that activates the Glycogen Synthase Kinase (GSK)-3 beta, whose action is necessary for HSV-1 entry/replication in these cells. Indeed, in co-cultures of neurons and astrocytes HSV-1-infected neurons were only found in proximity of infected astrocytes releasing ATP, whereas in the presence of fluorocitrate, an inhibitor of astrocyte metabolism, switching-off the HSV-1-induced ATP release, very few neurons were infected. The addition of exogenous ATP, mimicking that released by astrocytes after HSV-1 challenge, restored the ability of HSV-1 to infect neurons co-cultured with metabolically-inhibited astrocytes. The ATP-activated, P2R-mediated, and GSK-3-dependent molecular pathway underlying HSV-1 infection is likely shared by neurons and astrocytes, given that the blockade of either P2Rs or GSK-3 activation inhibited infection of both cell types. These results add a new layer of information to our understanding of the critical role played by astrocytes in regulating neuronal functions and their response to noxious stimuli including microbial agents via Ca2+-dependent release of neuroactive molecules.

Ca2+-dependent release of ATP from astrocytes affects herpes simplex virus Type 1 infection of neurons

De Chiara Giovanna;
2020

Abstract

Astrocytes provide metabolic support for neurons and modulate their functions by releasing a plethora of neuroactive molecules diffusing to neighboring cells. Here we report that astrocytes also play a role in cortical neurons' vulnerability to Herpes simplex virus type-1 (HSV-1) infection through the release of extracellular ATP. We found that the interaction of HSV-1 with heparan sulfate proteoglycans expressed on the plasma membrane of astrocytes triggered phospholipase C-mediated IP3-dependent intracellular Ca(2+)transients causing extracellular release of ATP. ATP binds membrane purinergic P2 receptors (P2Rs) of both neurons and astrocytes causing an increase in intracellular Ca(2+)concentration that activates the Glycogen Synthase Kinase (GSK)-3 beta, whose action is necessary for HSV-1 entry/replication in these cells. Indeed, in co-cultures of neurons and astrocytes HSV-1-infected neurons were only found in proximity of infected astrocytes releasing ATP, whereas in the presence of fluorocitrate, an inhibitor of astrocyte metabolism, switching-off the HSV-1-induced ATP release, very few neurons were infected. The addition of exogenous ATP, mimicking that released by astrocytes after HSV-1 challenge, restored the ability of HSV-1 to infect neurons co-cultured with metabolically-inhibited astrocytes. The ATP-activated, P2R-mediated, and GSK-3-dependent molecular pathway underlying HSV-1 infection is likely shared by neurons and astrocytes, given that the blockade of either P2Rs or GSK-3 activation inhibited infection of both cell types. These results add a new layer of information to our understanding of the critical role played by astrocytes in regulating neuronal functions and their response to noxious stimuli including microbial agents via Ca2+-dependent release of neuroactive molecules.
2020
FARMACOLOGIA TRASLAZIONALE - IFT
astrocytes
ATP
GSK-3 beta
herpes simplex virus
P2Rs
File in questo prodotto:
File Dimensione Formato  
Glia - 2020 - Li Puma - Ca2 ‐dependent release of ATP from astrocytes affects herpes simplex virus type 1 infection of.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.66 MB
Formato Adobe PDF
5.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact