Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). VISA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations.

ViSA: A Neurodynamic Model for Visuo-Spatial Working Memory, Attentional Blink, and Conscious Access

Simione Luca;
2012

Abstract

Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). VISA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations.
2012
attention
consciousness
attentional blink
working memory
model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact