Backscatter communication is widely adopted for radio-frequency identification (RFID). Recently, the possibility of localizing passive tags or readers, exploiting phase measurements from backscatter signals, received large attention. In particular, several applications with standard ultra-high frequency (UHF) RFID were proposed, thanks to the availability of the phase information in many commercial readers, without requiring any hardware modification. In this paper, the problem of localizing a tag or a reader using phase measurements is addressed from the estimation theory point of view. The derived structure for the maximum likelihood estimator is compared with other approaches proposed in the literature, showing its enhanced performance in a typical application context.
On phase-based localization with narrowband backscatter signals
Decarli N
2018
Abstract
Backscatter communication is widely adopted for radio-frequency identification (RFID). Recently, the possibility of localizing passive tags or readers, exploiting phase measurements from backscatter signals, received large attention. In particular, several applications with standard ultra-high frequency (UHF) RFID were proposed, thanks to the availability of the phase information in many commercial readers, without requiring any hardware modification. In this paper, the problem of localizing a tag or a reader using phase measurements is addressed from the estimation theory point of view. The derived structure for the maximum likelihood estimator is compared with other approaches proposed in the literature, showing its enhanced performance in a typical application context.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.