In a recent paper we introduced the concept of fractional score, a generalization of the linear score function, well-known in theoretical statistics. As the Gaussian density is closely related to the linear score, the fractional score function allows to identify Lévy stable laws as the (unique) probability densities for which the score of a random variable X is proportional to - X. We use this analogy to extend to stable laws the classical Poincaré inequality for Gaussian densities. Application of this inequality allows to obtain bounds on moments of stable laws, and a sharp one-dimensional version of Hardy-Poincaré inequality.

Poincaré-type inequalities for stable densities

G Toscani
2019

Abstract

In a recent paper we introduced the concept of fractional score, a generalization of the linear score function, well-known in theoretical statistics. As the Gaussian density is closely related to the linear score, the fractional score function allows to identify Lévy stable laws as the (unique) probability densities for which the score of a random variable X is proportional to - X. We use this analogy to extend to stable laws the classical Poincaré inequality for Gaussian densities. Application of this inequality allows to obtain bounds on moments of stable laws, and a sharp one-dimensional version of Hardy-Poincaré inequality.
2019
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Stable densities; Score functions; Fractional calculus; Poincare-type inequalities
File in questo prodotto:
File Dimensione Formato  
prod_434670-doc_155348.pdf

accesso aperto

Descrizione: Poincaré-type inequalities for stable densities
Tipologia: Versione Editoriale (PDF)
Dimensione 246.79 kB
Formato Adobe PDF
246.79 kB Adobe PDF Visualizza/Apri
prod_434670-doc_155349.pdf

solo utenti autorizzati

Descrizione: Poincaré-type inequalities for stable densities
Tipologia: Versione Editoriale (PDF)
Dimensione 254.69 kB
Formato Adobe PDF
254.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact