We consider 2D discrete systems, described by scalar functions and governed by periodic interaction potentials. We focus on anisotropic nearest neighbors interactions in the hexagonal lattice and on isotropic long range interactions in the square lattice. In both these cases, we perform a complete Gamma-convergence analysis of the energy induced by a configuration of discrete topological singularities. This analysis allows to prove the existence of many metastable configurations of singularities in the hexagonal lattice.

Gamma-convergence analysis for discrete topological singularities: The anisotropic triangular lattice and the long range interaction energy

De Luca;
2016

Abstract

We consider 2D discrete systems, described by scalar functions and governed by periodic interaction potentials. We focus on anisotropic nearest neighbors interactions in the hexagonal lattice and on isotropic long range interactions in the square lattice. In both these cases, we perform a complete Gamma-convergence analysis of the energy induced by a configuration of discrete topological singularities. This analysis allows to prove the existence of many metastable configurations of singularities in the hexagonal lattice.
2016
Istituto Applicazioni del Calcolo ''Mauro Picone''
discrete topological singularities
dislocations
XY spin systems
Gamma-convergence
File in questo prodotto:
File Dimensione Formato  
DL.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 449.55 kB
Formato Adobe PDF
449.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact