For the first time methanol tolerant Platinum Group Metal-free (PGM-free) Oxygen Reduction Reaction (ORR) electrocatalyst commercially available on market is integrated into the cathodic layer of highly performed Direct Methanol Fuel Cell (DMFC). The intrinsic ORR activity of Fe-N-C electrocatalyst is studied by Rotating Disk Electrode (RDE) technique with and with no methanol added, confirming material inactivity towards Methanol Oxidation Reaction (MOR). The electrocatalyst is tested in DMFC conditions where such important parameters as catalyst:ionomer ratio, concentration of methanol and operational temperature are varied and optimized for highest performance. The obtained activity and methanol tolerance in RDE measurements of commercial Fe-N-C catalyst is found to be comparable with previously reported state-of-the-art PGM-free cathodic materials. Furthermore, this material, used at the cathode compartment of a DMFC, allows reaching the highest power density recorded for PGM-free catalysts in a DMFC until now under similar conditions.

Commercial platinum group metal-free cathodic electrocatalysts for highly performed direct methanol fuel cell applications

Lo Vecchio C;Baglio V
2019

Abstract

For the first time methanol tolerant Platinum Group Metal-free (PGM-free) Oxygen Reduction Reaction (ORR) electrocatalyst commercially available on market is integrated into the cathodic layer of highly performed Direct Methanol Fuel Cell (DMFC). The intrinsic ORR activity of Fe-N-C electrocatalyst is studied by Rotating Disk Electrode (RDE) technique with and with no methanol added, confirming material inactivity towards Methanol Oxidation Reaction (MOR). The electrocatalyst is tested in DMFC conditions where such important parameters as catalyst:ionomer ratio, concentration of methanol and operational temperature are varied and optimized for highest performance. The obtained activity and methanol tolerance in RDE measurements of commercial Fe-N-C catalyst is found to be comparable with previously reported state-of-the-art PGM-free cathodic materials. Furthermore, this material, used at the cathode compartment of a DMFC, allows reaching the highest power density recorded for PGM-free catalysts in a DMFC until now under similar conditions.
2019
Istituto di Tecnologie Avanzate per l'Energia - ITAE
PGM-free catalysts
elec
oxygen reduction reaction
methanol tolerance
fuel cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? ND
social impact