In this work, the tunable properties of nematic liquid crystals are exploited in order to design a Fabry-Perot cavity (FPC) leaky-wave antenna (LWA) with beam steering capability at fixed frequency in the THz range. The considered design is a grounded dielectric slab covered with a multistack of alternating layers of low- and high-permittivity dielectric materials, consisting of nematic liquid crystals and alumina thin films, respectively. The former allows for achieving the beam-steering capability at a fixed frequency. Full-wave simulations confirmed the pattern reconfigurability of the device, thus opening very interesting possibilities for the realization of reconfigurable THz antennas.
A reconfigurable multilayered THz leaky-wave antenna employing liquid crystals
Fuscaldo Walter;Tofani Silvia;Zografopoulos Dimitrios C;Beccherelli Romeo;
2017
Abstract
In this work, the tunable properties of nematic liquid crystals are exploited in order to design a Fabry-Perot cavity (FPC) leaky-wave antenna (LWA) with beam steering capability at fixed frequency in the THz range. The considered design is a grounded dielectric slab covered with a multistack of alternating layers of low- and high-permittivity dielectric materials, consisting of nematic liquid crystals and alumina thin films, respectively. The former allows for achieving the beam-steering capability at a fixed frequency. Full-wave simulations confirmed the pattern reconfigurability of the device, thus opening very interesting possibilities for the realization of reconfigurable THz antennas.| File | Dimensione | Formato | |
|---|---|---|---|
|
Fuscaldo_EuCAP2017_NLC-LWA.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
421.68 kB
Formato
Adobe PDF
|
421.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


