In this work, the tunable properties of nematic liquid crystals are exploited in order to design a Fabry-Perot cavity (FPC) leaky-wave antenna (LWA) with beam steering capability at fixed frequency in the THz range. The considered design is a grounded dielectric slab covered with a multistack of alternating layers of low- and high-permittivity dielectric materials, consisting of nematic liquid crystals and alumina thin films, respectively. The former allows for achieving the beam-steering capability at a fixed frequency. Full-wave simulations confirmed the pattern reconfigurability of the device, thus opening very interesting possibilities for the realization of reconfigurable THz antennas.

A reconfigurable multilayered THz leaky-wave antenna employing liquid crystals

Fuscaldo Walter;Beccherelli Romeo;
2017

Abstract

In this work, the tunable properties of nematic liquid crystals are exploited in order to design a Fabry-Perot cavity (FPC) leaky-wave antenna (LWA) with beam steering capability at fixed frequency in the THz range. The considered design is a grounded dielectric slab covered with a multistack of alternating layers of low- and high-permittivity dielectric materials, consisting of nematic liquid crystals and alumina thin films, respectively. The former allows for achieving the beam-steering capability at a fixed frequency. Full-wave simulations confirmed the pattern reconfigurability of the device, thus opening very interesting possibilities for the realization of reconfigurable THz antennas.
2017
9788890701870
Fabry-Perot cavities
leaky-wave antennas
liquid crystals
terahertz (THz)
tunable antennas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact