Climate change, associated with global warming, extreme weather events, and increasing incidence of weeds, pests and pathogens, is strongly influencing major cropping systems. In this challenging scenario, miscellaneous strategies are needed to expedite the rate of genetic gains with the purpose of developing novel varieties. Large plant breeding populations, efficient high-throughput technologies, big data management tools, and downstream biotechnology and molecular techniques are the pillars on which next generation breeding is based. In this review, we describe the toolbox the breeder has to face the challenges imposed by climate change, remark on the key role bioinformatics plays in the analysis and interpretation of big "omics" data, and acknowledge all the benefits that have been introduced into breeding strategies with the biotechnological and digital revolution.

Climate change, associated with global warming, extreme weather events, and increasing incidence of weeds, pests and pathogens, is strongly influencing major cropping systems. In this challenging scenario, miscellaneous strategies are needed to expedite the rate of genetic gains with the purpose of developing novel varieties. Large plant breeding populations, efficient high-throughput technologies, big data management tools, and downstream biotechnology and molecular techniques are the pillars on which next generation breeding is based. In this review, we describe the toolbox the breeder has to face the challenges imposed by climate change, remark on the key role bioinformatics plays in the analysis and interpretation of big "omics" data, and acknowledge all the benefits that have been introduced into breeding strategies with the biotechnological and digital revolution.

Biotechnological and digital revolution for climate-smart plant breeding

Taranto F;
2018

Abstract

Climate change, associated with global warming, extreme weather events, and increasing incidence of weeds, pests and pathogens, is strongly influencing major cropping systems. In this challenging scenario, miscellaneous strategies are needed to expedite the rate of genetic gains with the purpose of developing novel varieties. Large plant breeding populations, efficient high-throughput technologies, big data management tools, and downstream biotechnology and molecular techniques are the pillars on which next generation breeding is based. In this review, we describe the toolbox the breeder has to face the challenges imposed by climate change, remark on the key role bioinformatics plays in the analysis and interpretation of big "omics" data, and acknowledge all the benefits that have been introduced into breeding strategies with the biotechnological and digital revolution.
2018
Climate change, associated with global warming, extreme weather events, and increasing incidence of weeds, pests and pathogens, is strongly influencing major cropping systems. In this challenging scenario, miscellaneous strategies are needed to expedite the rate of genetic gains with the purpose of developing novel varieties. Large plant breeding populations, efficient high-throughput technologies, big data management tools, and downstream biotechnology and molecular techniques are the pillars on which next generation breeding is based. In this review, we describe the toolbox the breeder has to face the challenges imposed by climate change, remark on the key role bioinformatics plays in the analysis and interpretation of big "omics" data, and acknowledge all the benefits that have been introduced into breeding strategies with the biotechnological and digital revolution.
climate change; mapping populations; genetic resources; mutation breeding; genome editing; new plant breeding techniques; "omics" data; bioinformatics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? ND
social impact