We describe an experimental strategy for the use of Terahertz (THz) metasurfaces as a platform for label-free wide range detection of the dielectric function in biological fluids. Specifically, we propose a metagrid (MG), opportunely infiltrated with a fluid and then capped, as the reference structure for sensing experiments with a high reproducibility character. By combining experiments and full-wave simulations of the transmission T of such a structure, we introduce a reliable set up where the volume of the involved analyte in each unit cell is precisely determined. The unavoidable decrease in the quality factor of the intrinsic resonances due to the lossy fluid and cap layer is circumvented using an appropriate transformation of T that amplifies the change in the MG intrinsic resonances, improving in such a way the sensor sensitivity to values close to the experimental limits. The transformed signal features delta-like peaks enabling an easy readout of frequency positions at resonances.

Encoded-Enhancement of THz Metasurface Figure of Merit for Label-Free Sensing

Andreone Antonello
2019

Abstract

We describe an experimental strategy for the use of Terahertz (THz) metasurfaces as a platform for label-free wide range detection of the dielectric function in biological fluids. Specifically, we propose a metagrid (MG), opportunely infiltrated with a fluid and then capped, as the reference structure for sensing experiments with a high reproducibility character. By combining experiments and full-wave simulations of the transmission T of such a structure, we introduce a reliable set up where the volume of the involved analyte in each unit cell is precisely determined. The unavoidable decrease in the quality factor of the intrinsic resonances due to the lossy fluid and cap layer is circumvented using an appropriate transformation of T that amplifies the change in the MG intrinsic resonances, improving in such a way the sensor sensitivity to values close to the experimental limits. The transformed signal features delta-like peaks enabling an easy readout of frequency positions at resonances.
2019
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
terahertz metasurface
label-free sensing
quality factor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact