In this paper, a small series of anthracene-maleimide-based compounds was prepared and evaluated to assess the antimicrobial potential of this polycyclic core, a scaffold previously unexplored for new antibiotic development. Some of the new compounds showed appreciable anti-Staphylococcus aureus activity, together with good safety profiles. In particular, compound 13 proved to be the most promising of the series, showing remarkable antimicrobial activity toward planktonic and sessile bacterial cells within a mature preformed biofilm. The mechanism of action seems to be related to the ability of this compound to interfere with bacterial membrane functionality, probably through the targeting of key enzymes responsible for membrane redox homeostasis and energy production. The data reported confirm the ability of this polycyclic nucleus to behave as a new "privileged structure", suitable to be further exploited in the antimicrobial field.

Targeting the Bacterial Membrane with a New Polycyclic Privileged Structure: A Powerful Tool To Face Staphylococcus aureus Infections

Manet Ilse;
2019

Abstract

In this paper, a small series of anthracene-maleimide-based compounds was prepared and evaluated to assess the antimicrobial potential of this polycyclic core, a scaffold previously unexplored for new antibiotic development. Some of the new compounds showed appreciable anti-Staphylococcus aureus activity, together with good safety profiles. In particular, compound 13 proved to be the most promising of the series, showing remarkable antimicrobial activity toward planktonic and sessile bacterial cells within a mature preformed biofilm. The mechanism of action seems to be related to the ability of this compound to interfere with bacterial membrane functionality, probably through the targeting of key enzymes responsible for membrane redox homeostasis and energy production. The data reported confirm the ability of this polycyclic nucleus to behave as a new "privileged structure", suitable to be further exploited in the antimicrobial field.
2019
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
anthracene-maleimide-based compounds
Staphylococcus aureus
membrane-disrupting activity
clinical strains
antibiotic resistance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact