Functionally active membranes made of cellulosic microfibers (CMFs) have emerged as promising sorbents for the removal of nano-sized pollutants from water. The adsorption efficiency of these membranes has been increased through surface functionalization of pristine-CMFs using various chemistries. Still, until now, the produced materials consist of highly dense 2D networks that make the membranes inadequate as filters because of the very short interlayer spacing. Here, we report on novel tuned CMF functionalization procedures, namely carboxylation, phosphorylation, and methylation, that can overcome this problem by modulating the interlayer separation in the 2D membranes. To test our approach, fabricated nanolaminate membranes with grafted functional groups were subjected for the separation of metal ions, a dye and two drugs, and their separation efficiencies are being correlated with the degree of functionalization and tuned intercapillary spacing.

Enhanced sieving of cellulosic microfiber membranes: Via tuning of interlayer spacing

Monti S;Barcaro G;
2020

Abstract

Functionally active membranes made of cellulosic microfibers (CMFs) have emerged as promising sorbents for the removal of nano-sized pollutants from water. The adsorption efficiency of these membranes has been increased through surface functionalization of pristine-CMFs using various chemistries. Still, until now, the produced materials consist of highly dense 2D networks that make the membranes inadequate as filters because of the very short interlayer spacing. Here, we report on novel tuned CMF functionalization procedures, namely carboxylation, phosphorylation, and methylation, that can overcome this problem by modulating the interlayer separation in the 2D membranes. To test our approach, fabricated nanolaminate membranes with grafted functional groups were subjected for the separation of metal ions, a dye and two drugs, and their separation efficiencies are being correlated with the degree of functionalization and tuned intercapillary spacing.
2020
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto per i Processi Chimico-Fisici - IPCF
Alkylation
Carboxylation
Efficiency
Metal ions
Metals
Microfibers
Separation
Water pollution
File in questo prodotto:
File Dimensione Formato  
Environ. Sci. Nano, 2020,7, 2941-2952.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.99 MB
Formato Adobe PDF
6.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper2_proof.pdf

Open Access dal 14/08/2021

Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in https://doi.org/10.1039/D0EN00613K.”
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 6.23 MB
Formato Adobe PDF
6.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact