Tracking information diffusion is a non-trivial task and it has been widely studied across different domains and platforms. The advent of social media has led to even more challenges, given the higher speed of information propagation and the growing impact of social bots and anomalous accounts. Nevertheless, it is crucial to derive a trustworthy information diffusion graph, which is capable of highlighting the importance of specific nodes in spreading the original message. The paper introduces the interaction strength, a novel metric to model retweet cascade graphs by exploring users' interactions. Initial findings show the soundness of the approaches based on this new metric with respect to the state-of-the-art model, and its ability to generate a denser graph, revealing crucial nodes that participated in the retweet propagation. Reliable retweet graph generation will enable a better understanding of the diffusion path of a specific tweet.

Interaction strength analysis to model retweet cascade graphs

P Zola;G Cola;M Mazza;M Tesconi
2020

Abstract

Tracking information diffusion is a non-trivial task and it has been widely studied across different domains and platforms. The advent of social media has led to even more challenges, given the higher speed of information propagation and the growing impact of social bots and anomalous accounts. Nevertheless, it is crucial to derive a trustworthy information diffusion graph, which is capable of highlighting the importance of specific nodes in spreading the original message. The paper introduces the interaction strength, a novel metric to model retweet cascade graphs by exploring users' interactions. Initial findings show the soundness of the approaches based on this new metric with respect to the state-of-the-art model, and its ability to generate a denser graph, revealing crucial nodes that participated in the retweet propagation. Reliable retweet graph generation will enable a better understanding of the diffusion path of a specific tweet.
2020
Istituto di informatica e telematica - IIT
social media
network analysis
interaction strength
retweet graph
retweet cascade
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact