Clustering has been one of the most popular methods to discover useful biological insights from DNA microarray. An interesting paradigm is simultaneous clustering of both genes and experiments. This "biclustering "paradigm aims at discovering clusters that consist of a subset of the genes showing a coherent expression pattern over a subset of conditions. The pClustering approach is a technique that belongs to this paradigm. Despite many theoretical advantages, this technique has been rarely applied to actual gene expression data analysis. Possible reasons include the worst-case complexity of the clustering algorithm and the difficulty in interpreting clustering results. In this paper, we propose an enhanced framework for performing pClustering on actual gene expression analysis. Our new framework includes an effective data preparation method, highly scalable clustering strategies, and an intuitive result interpretation scheme. The experimental result confirms the effectiveness of our approach.

Enhanced pClustering and its applications to gene expression data

Nardini C;
2004

Abstract

Clustering has been one of the most popular methods to discover useful biological insights from DNA microarray. An interesting paradigm is simultaneous clustering of both genes and experiments. This "biclustering "paradigm aims at discovering clusters that consist of a subset of the genes showing a coherent expression pattern over a subset of conditions. The pClustering approach is a technique that belongs to this paradigm. Despite many theoretical advantages, this technique has been rarely applied to actual gene expression data analysis. Possible reasons include the worst-case complexity of the clustering algorithm and the difficulty in interpreting clustering results. In this paper, we propose an enhanced framework for performing pClustering on actual gene expression analysis. Our new framework includes an effective data preparation method, highly scalable clustering strategies, and an intuitive result interpretation scheme. The experimental result confirms the effectiveness of our approach.
2004
Istituto Applicazioni del Calcolo ''Mauro Picone''
0-7695-2173-8
clustering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact