Droplet volume and temperature affect contact angle significantly. Phase change heat transfer processes of nanofluids - suspensions containing nanometre-sized particles - can only be modelled properly by understanding these effects. The approach proposed here considers the limiting contact angle of a droplet asymptotically approaching zero-volume as a thermophysical property to characterise nanofluids positioned on a certain substrate under a certain atmosphere. Graphene oxide, alumina, and gold nanoparticles are suspended in deionised water. Within the framework of a round robin test carried out by nine independent European institutes the contact angle of these suspensions on a stainless steel solid substrate is measured with high accuracy. No dependence of nanofluids contact angle of sessile droplets on the measurement device is found. However, the measurements reveal clear differences of the contact angle of nanofluids compared to the pure base fluid. Physically founded correlations of the contact angle in dependency of droplet temperature and volume are obtained from the data. Extrapolating these functions to zero droplet volume delivers the searched limiting contact angle depending only on the temperature. It is for the first time, that this specific parameter, is understood as a characteristic material property of nanofluid droplets placed on a certain substrate under a certain atmosphere. Together with the surface tension it provides the foundation of proper modelling phase change heat transfer processes of nanofluids.

The contact angle of nanofluids as thermophysical property

Barison S;
2019

Abstract

Droplet volume and temperature affect contact angle significantly. Phase change heat transfer processes of nanofluids - suspensions containing nanometre-sized particles - can only be modelled properly by understanding these effects. The approach proposed here considers the limiting contact angle of a droplet asymptotically approaching zero-volume as a thermophysical property to characterise nanofluids positioned on a certain substrate under a certain atmosphere. Graphene oxide, alumina, and gold nanoparticles are suspended in deionised water. Within the framework of a round robin test carried out by nine independent European institutes the contact angle of these suspensions on a stainless steel solid substrate is measured with high accuracy. No dependence of nanofluids contact angle of sessile droplets on the measurement device is found. However, the measurements reveal clear differences of the contact angle of nanofluids compared to the pure base fluid. Physically founded correlations of the contact angle in dependency of droplet temperature and volume are obtained from the data. Extrapolating these functions to zero droplet volume delivers the searched limiting contact angle depending only on the temperature. It is for the first time, that this specific parameter, is understood as a characteristic material property of nanofluid droplets placed on a certain substrate under a certain atmosphere. Together with the surface tension it provides the foundation of proper modelling phase change heat transfer processes of nanofluids.
2019
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Contact angle
Experimental strategy
Influence of temperature
Influence of volume
Nanofluids
File in questo prodotto:
File Dimensione Formato  
prod_405312-doc_141682.pdf

solo utenti autorizzati

Descrizione: The contact angle of nanofluids as thermophysical property
Tipologia: Versione Editoriale (PDF)
Dimensione 3.18 MB
Formato Adobe PDF
3.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
social impact