We analyzed thermal data from deep oil exploration and geothermal boreholes in the 1000-7000 m depth range to unravel thermal regime beneath the central-northern Apennines chain and the surrounding sedimentary basins. We particularly selected deepest bottom hole temperatures, all recorded within the permeable carbonate Paleogene-Mesozoic formations, which represent the most widespread tectono-stratigraphic unit of the study area. The available temperatures were corrected for the drilling disturbanceand the thermal conductivity was estimated from detailed litho-stratigraphic information and by taking into account the pressure and temperature effect. The thermal resistance approach, including also the radiogenic heat production, was used to infer the terrestrial heat flow and to highlight possible advective perturbation due to groundwater circulation. Only two boreholes close to recharge areas argue for deep groundwater flow in the permeable carbonate unit, whereas most of the obtained heat-flow data may reflect the deep, undisturbed, conductive thermal regime.

Conductive heat flow pattern of the central northern Apennines, Italy

Gola G;
2019

Abstract

We analyzed thermal data from deep oil exploration and geothermal boreholes in the 1000-7000 m depth range to unravel thermal regime beneath the central-northern Apennines chain and the surrounding sedimentary basins. We particularly selected deepest bottom hole temperatures, all recorded within the permeable carbonate Paleogene-Mesozoic formations, which represent the most widespread tectono-stratigraphic unit of the study area. The available temperatures were corrected for the drilling disturbanceand the thermal conductivity was estimated from detailed litho-stratigraphic information and by taking into account the pressure and temperature effect. The thermal resistance approach, including also the radiogenic heat production, was used to infer the terrestrial heat flow and to highlight possible advective perturbation due to groundwater circulation. Only two boreholes close to recharge areas argue for deep groundwater flow in the permeable carbonate unit, whereas most of the obtained heat-flow data may reflect the deep, undisturbed, conductive thermal regime.
2019
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
conductive heat flow
botton hole temperature
central-nothern Apennines
Italy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact