Current technologies to monitor formation and disruption in in vitro cell cultures are based either on optical techniques or on electrical impedance/resistance measurement, which often rely on cumbersome and time-consuming measurements and data analyses. In this paper, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based organic electrochemical transistors (OECTs) are proposed with channel areas specifically designed and dimensioned as fast and real-time monitoring devices for a large variety of cell lines, with a broad range of tissue resistance. In particular, it is investigated how and why two device configurations provide a different response to leaky-barrier (NIH-3T3) and strong-barrier (CaCo-2) cell lines growth and detachment, achieving a continuous monitoring also for leaky-barrier cell layer growth and detachment. Data are collected using the transistor dynamic behavior to a DC potential pulse on the gate, providing an excellent time resolution and thus enhancing the amount of information that can be collected for fast biological processes (<5 s).

Organic Electrochemical Transistors: Smart Devices for Real-Time Monitoring of Cellular Vitality

Barbalinardo Marianna;Gentili Denis;Valle Francesco;Cavallini Massimiliano;
2019

Abstract

Current technologies to monitor formation and disruption in in vitro cell cultures are based either on optical techniques or on electrical impedance/resistance measurement, which often rely on cumbersome and time-consuming measurements and data analyses. In this paper, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based organic electrochemical transistors (OECTs) are proposed with channel areas specifically designed and dimensioned as fast and real-time monitoring devices for a large variety of cell lines, with a broad range of tissue resistance. In particular, it is investigated how and why two device configurations provide a different response to leaky-barrier (NIH-3T3) and strong-barrier (CaCo-2) cell lines growth and detachment, achieving a continuous monitoring also for leaky-barrier cell layer growth and detachment. Data are collected using the transistor dynamic behavior to a DC potential pulse on the gate, providing an excellent time resolution and thus enhancing the amount of information that can be collected for fast biological processes (<5 s).
2019
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
bioelectronics
biosensor
cell tissue monitoring
OECT
PEDOT
PSS
File in questo prodotto:
File Dimensione Formato  
Organic Electrochemical Transistors: Smart Devices for Real-Time Monitoring of Cellular Vitality.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/386947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
social impact