Let M(A) be the complement in C2 of a complexified line arrangement. We provide compact formulas for a Morse complex which computes the (co)homology of M(A) with coefficients in an abelian local system. This refines and simplifies, in the two-dimensional case, a general construction appeared in [M. Salvetti, S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007) 1733-1766], giving also a direct geometrical interpretation.
The Morse complex of a line arrangement
Mario Salvetti
2009
Abstract
Let M(A) be the complement in C2 of a complexified line arrangement. We provide compact formulas for a Morse complex which computes the (co)homology of M(A) with coefficients in an abelian local system. This refines and simplifies, in the two-dimensional case, a general construction appeared in [M. Salvetti, S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007) 1733-1766], giving also a direct geometrical interpretation.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_184147-doc_29685.pdf
solo utenti autorizzati
Descrizione: Published paper
Tipologia:
Versione Editoriale (PDF)
Dimensione
337.48 kB
Formato
Adobe PDF
|
337.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


