The boundaries between congenital myopathies and muscular dystrophies and other neuromuscular disorders are becoming blurred because of the significant overlap in disease genes, clinical presentations, and histopathological features. Using a MotorPlex7.0 gene panel in massive sequencing, we define disease causative mutations in 76% of our sample. We then analysed the extent of gene information in the data using non metric multidimensional scaling (nMDS), a well-known algorithm for multivariate analysis, and clustering techniques. To perform this analysis, we developed a software that allows for an interactive exploration of the variants dataset and of the results of the nMDS model. Using these techniques, we were able to quickly study a dataset consisting of thousands of variants, identifying groupings of patients based on the presence or absence of specific sets of mutations.

A Novel Approach to Gene Analysis: Gene Panels and Cluster Definition to Assist Genotyping Patients with Congenital Myopathies

Alessandro Tonacci;Raffaele Conte;
2019

Abstract

The boundaries between congenital myopathies and muscular dystrophies and other neuromuscular disorders are becoming blurred because of the significant overlap in disease genes, clinical presentations, and histopathological features. Using a MotorPlex7.0 gene panel in massive sequencing, we define disease causative mutations in 76% of our sample. We then analysed the extent of gene information in the data using non metric multidimensional scaling (nMDS), a well-known algorithm for multivariate analysis, and clustering techniques. To perform this analysis, we developed a software that allows for an interactive exploration of the variants dataset and of the results of the nMDS model. Using these techniques, we were able to quickly study a dataset consisting of thousands of variants, identifying groupings of patients based on the presence or absence of specific sets of mutations.
2019
Istituto di Fisiologia Clinica - IFC
Congenital Myopathies
Muscular Dystrophies
Gene Sequencing
Non Metric Multidimensional Scaling
Clustering
High Throughput Data Analysis
File in questo prodotto:
File Dimensione Formato  
prod_403093-doc_140273.pdf

solo utenti autorizzati

Descrizione: Contributo
Tipologia: Documento in Post-print
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/387148
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact