Results: Analysis of the CRKL network -available at http://www.picb.ac.cn/ClinicalGenomicNTW/software.html-allows for investigation of the potential effect of perturbing genes of interest. Within the group of genes that are significantly affected by simulated perturbation of CRKL, we are lead to further investigate the importance of PXN. Our results allow us to (1) refine the hypothesis on CRKL as a novel drug target (2) indicate potential causes of side effects in on- going trials and (3) importantly, provide recommendations with impact on on- going clinical studies.

Background: Rheumatoid arthritis (RA) is among the most common human systemic autoimmune diseases, affecting approximately 1% of the population worldwide. To date, there is no cure for the disease and current treatments show undesirable side effects. As the disease affects a growing number of individuals, and during their working age, the gathering of all information able to improve therapies -by understanding their and the disease mechanisms of action- represents an important area of research, benefiting not only patients but also societies. In this direction, network analysis methods have been used in previous work to further our understanding of this complex disease, leading to the identification of CRKL as a potential drug target for treatment of RA. Here, we use computational methods to expand on this work, testing the hypothesis in silico.

From desk to bed: Computational simulations provide indication for rheumatoid arthritis clinical trials

Nardini Christine
2013

Abstract

Background: Rheumatoid arthritis (RA) is among the most common human systemic autoimmune diseases, affecting approximately 1% of the population worldwide. To date, there is no cure for the disease and current treatments show undesirable side effects. As the disease affects a growing number of individuals, and during their working age, the gathering of all information able to improve therapies -by understanding their and the disease mechanisms of action- represents an important area of research, benefiting not only patients but also societies. In this direction, network analysis methods have been used in previous work to further our understanding of this complex disease, leading to the identification of CRKL as a potential drug target for treatment of RA. Here, we use computational methods to expand on this work, testing the hypothesis in silico.
2013
Istituto Applicazioni del Calcolo ''Mauro Picone''
Results: Analysis of the CRKL network -available at http://www.picb.ac.cn/ClinicalGenomicNTW/software.html-allows for investigation of the potential effect of perturbing genes of interest. Within the group of genes that are significantly affected by simulated perturbation of CRKL, we are lead to further investigate the importance of PXN. Our results allow us to (1) refine the hypothesis on CRKL as a novel drug target (2) indicate potential causes of side effects in on- going trials and (3) importantly, provide recommendations with impact on on- going clinical studies.
Rheumatoid arthritis
Tyrosine kynase
Simulation modelling
BioLayout express
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/387190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact