A composite specimen, made of two slabs and an interface A is heated through one of its sides S, in order to evaluate the thermal conductance H of A. The direct model consists of a system of Initial Boundary Value Problems completed by suitable transmission conditions. Thanks to the properties of multilayer diffusion, we reduce the problem to the slab between A and S only. In this case evaluating the thermal resistance of A means to identify a coefficient in a Robin boundary condition. We evaluate H numerically by means of Thin Plate Approximation.

Identification of time-varying inaccessible thermal conductance from data at the boundary

Inglese G;Olmi R
2020

Abstract

A composite specimen, made of two slabs and an interface A is heated through one of its sides S, in order to evaluate the thermal conductance H of A. The direct model consists of a system of Initial Boundary Value Problems completed by suitable transmission conditions. Thanks to the properties of multilayer diffusion, we reduce the problem to the slab between A and S only. In this case evaluating the thermal resistance of A means to identify a coefficient in a Robin boundary condition. We evaluate H numerically by means of Thin Plate Approximation.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Fisica Applicata - IFAC
Inverse problems
heat equation
layered materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/387320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact