Continental ShelfWaves (CSWs) are oscillatory phenomena migrating along the continental margins, controlled by the interplay of rotation and bathymetric gradients. Here we combine observational data from five moored current meters and high-resolution hydrodynamic model fields for describing the generation and propagation of CSWs along the Southern Adriatic Margin (SAM, eastern Mediterranean Sea), where the possibility of their occurrence has been theoretically hypothesised but not experimentally observed up to now. Results show that in spring 2012 a train of CSWs with 35-87 km wavelength and 2-4 day period was generated on the northern sectors of the SAM and propagated southwards along its western slope. Along their path, CSWs modify their apparent frequency and oscillation mode as an effect of the background current and scattering caused by changes in the continental margin morphology. This signal appears as a persistent feature triggered by the inflow of a dense water vein formed in the northern Adriatic Sea, propagating upwelling and downwelling patterns along broad sectors of the continental slope. CSWs thus appear as an additional remote-controlled mechanism for cross-shelf exchange of water, sediment and nutrients in the SAM, besides the well-acknowledged dense water downflow along preferential pathways driven by local topographic constraints.

Framing Continental ShelfWaves in the southern Adriatic Sea, a further flushing factor beyond dense water

Bonaldo Davide;Carniel Sandro
2018

Abstract

Continental ShelfWaves (CSWs) are oscillatory phenomena migrating along the continental margins, controlled by the interplay of rotation and bathymetric gradients. Here we combine observational data from five moored current meters and high-resolution hydrodynamic model fields for describing the generation and propagation of CSWs along the Southern Adriatic Margin (SAM, eastern Mediterranean Sea), where the possibility of their occurrence has been theoretically hypothesised but not experimentally observed up to now. Results show that in spring 2012 a train of CSWs with 35-87 km wavelength and 2-4 day period was generated on the northern sectors of the SAM and propagated southwards along its western slope. Along their path, CSWs modify their apparent frequency and oscillation mode as an effect of the background current and scattering caused by changes in the continental margin morphology. This signal appears as a persistent feature triggered by the inflow of a dense water vein formed in the northern Adriatic Sea, propagating upwelling and downwelling patterns along broad sectors of the continental slope. CSWs thus appear as an additional remote-controlled mechanism for cross-shelf exchange of water, sediment and nutrients in the SAM, besides the well-acknowledged dense water downflow along preferential pathways driven by local topographic constraints.
2018
Istituto di Scienze Marine - ISMAR
COASTAL-TRAPPED WAVES; COLD-AIR OUTBREAK; TOPOGRAPHIC WAVES; MODELING-SYSTEM; MEAN CURRENT; OCEAN; SCATTERING; WINTER; BOTTOM; PROPAGATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/387455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact