We tested the independent and interactive effects of nitrogen (N; 0 and 80 kg ha(-1)), phosphorus (P; 0, 40 and 80 kg ha(-1)), and ozone (O-3) application/exposure [ambient concentration (AA), 1.5 x AA and 2.0 x AA] for five consecutive months on biochemical traits of the O-3-sensitive Oxford poplar clone. Plants exposed to O-3 showed visible injury and an alteration of membrane integrity, as confirmed by the malondialdehyde byproduct accumulation (+3 and + 17% under 1.5 x AA and 2.0 x AA conditions, in comparison to AA). This was probably due to O-3-induced oxidative damage, as documented by the production of superoxide anion radical (O-2(.-), +27 and -E 63%, respectively). Ozone per se, independently from the concentrations, induced multiple signals (e.g., alteration of cellular redox state, increase of abscisic acickindole-3-acetic acid ratio and reduction of proline content) that might be part of premature leaf senescence processes. By contrast, nutrient fertilization (both N and P) reduced reactive oxygen species accumulation (as confirmed by the decreased O-2(.-) and hydrogen peroxide content), resulting in enhanced membrane stability. This was probably due to the simultaneous involvement of antioxidant compounds (e.g., carotenoids, ascorbate and glutathione) and osmoprotectants (e.g., proline) that regulate the detoxification processes of coping with oxidative stress by redwing the O-3 sensitivity of Oxford clone. These mitigation effects were effective only under AA and 1.5 x AA conditions. Nitrogen and P supply activated a free radical scavenging system that was not able to delay leaf senescence and mitigate the adverse effects of a general peroxidation due to the highest 03 concentrations. (C) 2018 Elsevier B.V. All rights reserved.

Can nutrient fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar clone?

Hoshika Y;Carrari E;Baraldi R;Neri L;Paoletti E
2019

Abstract

We tested the independent and interactive effects of nitrogen (N; 0 and 80 kg ha(-1)), phosphorus (P; 0, 40 and 80 kg ha(-1)), and ozone (O-3) application/exposure [ambient concentration (AA), 1.5 x AA and 2.0 x AA] for five consecutive months on biochemical traits of the O-3-sensitive Oxford poplar clone. Plants exposed to O-3 showed visible injury and an alteration of membrane integrity, as confirmed by the malondialdehyde byproduct accumulation (+3 and + 17% under 1.5 x AA and 2.0 x AA conditions, in comparison to AA). This was probably due to O-3-induced oxidative damage, as documented by the production of superoxide anion radical (O-2(.-), +27 and -E 63%, respectively). Ozone per se, independently from the concentrations, induced multiple signals (e.g., alteration of cellular redox state, increase of abscisic acickindole-3-acetic acid ratio and reduction of proline content) that might be part of premature leaf senescence processes. By contrast, nutrient fertilization (both N and P) reduced reactive oxygen species accumulation (as confirmed by the decreased O-2(.-) and hydrogen peroxide content), resulting in enhanced membrane stability. This was probably due to the simultaneous involvement of antioxidant compounds (e.g., carotenoids, ascorbate and glutathione) and osmoprotectants (e.g., proline) that regulate the detoxification processes of coping with oxidative stress by redwing the O-3 sensitivity of Oxford clone. These mitigation effects were effective only under AA and 1.5 x AA conditions. Nitrogen and P supply activated a free radical scavenging system that was not able to delay leaf senescence and mitigate the adverse effects of a general peroxidation due to the highest 03 concentrations. (C) 2018 Elsevier B.V. All rights reserved.
2019
Istituto di Biometeorologia - IBIMET - Sede Firenze
Istituto per la Protezione Sostenibile delle Piante - IPSP
Detoxification
Oxidative damage
Antioxidant compounds
Nitrogen
Phosphorus
Premature senescence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/387516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 41
social impact