Understanding protein interactions with inorganic nanoparticle is central to the rational design of new tools in biomaterial sciences, nanobiotechnology, and nanomedicine. Theoretical modeling and simulations provide complementary approaches for experimental studies and are applied for exploring protein-particle surface-binding mechanisms, the determinants of binding specificity toward different surfaces, and the thermodynamics and kinetics of adsorption. The use of multiscale approaches is inevitable because the adsorption events extend over a wide range of time and length scales, which require the system to be addressed at different resolution levels. Here, we review the latest advances in coarse-grained treatment of these systems, usually addressed using residue-level resolution for proteins and mesoscale for the nanoparticle. We illustrate the parameterization strategies, focusing on those combining experimental and atomistic simulation data, within the theoretical framework of multiscale approaches.
Multiscale modeling of proteins interaction with functionalized nanoparticles
Brancolini G;Tozzini V
2019
Abstract
Understanding protein interactions with inorganic nanoparticle is central to the rational design of new tools in biomaterial sciences, nanobiotechnology, and nanomedicine. Theoretical modeling and simulations provide complementary approaches for experimental studies and are applied for exploring protein-particle surface-binding mechanisms, the determinants of binding specificity toward different surfaces, and the thermodynamics and kinetics of adsorption. The use of multiscale approaches is inevitable because the adsorption events extend over a wide range of time and length scales, which require the system to be addressed at different resolution levels. Here, we review the latest advances in coarse-grained treatment of these systems, usually addressed using residue-level resolution for proteins and mesoscale for the nanoparticle. We illustrate the parameterization strategies, focusing on those combining experimental and atomistic simulation data, within the theoretical framework of multiscale approaches.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.