Alzheimer's disease (AD) is a multifactorial pathology that requires multifaceted agents able to address its peculiar nature. In recent years, a plethora of proteins and biochemical pathways has been proposed as possible targets to counteract neurotoxicity. Although the complex scenario is not completely elucidated, close relationships are emerging among some of these actors. In particular, increasing evidence has shown that aggregation of amyloid beta (A beta), glycogen synthase kinase 3 beta (GSK-3 beta) and oxidative stress are strictly interconnected and their concomitant modulation may have a positive and synergic effect in contrasting AD-related impairments. We designed compound 3 which demonstrated the ability to inhibit both GSK-3 beta (IC50 = 24.36 +/- 0.01 mu M) and A beta(42) self-aggregation (IC50 = 9.0 +/- 1.4 mu M), to chelate copper (II) and to act as exceptionally strong radical scavenger (k(inh) = 6.8 +/- 0.5 . 10(5) M(-1)s(-1)) even in phosphate buffer at pH 7.4 (k(inh) = 3.2 +/- 0.5 . 10(5) M(-1)s(-1)). Importantly, compound 3 showed high predicted blood-brain barrier permeability, did not exert any significant cytotoxic effects in immature cortical neurons up to 50 mu M and showed neuroprotective properties at micromolar concentration against toxic insult induced by glutamate. (C) 2017 Elsevier Masson SAS. All rights reserved.

Hydroxy-substituted trans-cinnamoyl derivatives as multifunctional tools in the context of Alzheimer's disease

Baschieri Andrea;
2017

Abstract

Alzheimer's disease (AD) is a multifactorial pathology that requires multifaceted agents able to address its peculiar nature. In recent years, a plethora of proteins and biochemical pathways has been proposed as possible targets to counteract neurotoxicity. Although the complex scenario is not completely elucidated, close relationships are emerging among some of these actors. In particular, increasing evidence has shown that aggregation of amyloid beta (A beta), glycogen synthase kinase 3 beta (GSK-3 beta) and oxidative stress are strictly interconnected and their concomitant modulation may have a positive and synergic effect in contrasting AD-related impairments. We designed compound 3 which demonstrated the ability to inhibit both GSK-3 beta (IC50 = 24.36 +/- 0.01 mu M) and A beta(42) self-aggregation (IC50 = 9.0 +/- 1.4 mu M), to chelate copper (II) and to act as exceptionally strong radical scavenger (k(inh) = 6.8 +/- 0.5 . 10(5) M(-1)s(-1)) even in phosphate buffer at pH 7.4 (k(inh) = 3.2 +/- 0.5 . 10(5) M(-1)s(-1)). Importantly, compound 3 showed high predicted blood-brain barrier permeability, did not exert any significant cytotoxic effects in immature cortical neurons up to 50 mu M and showed neuroprotective properties at micromolar concentration against toxic insult induced by glutamate. (C) 2017 Elsevier Masson SAS. All rights reserved.
2017
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Alzheimer's disease
Multitarget agents
Oxidative stress
Glycogen synthase kinase 3 beta
A beta aggregation
File in questo prodotto:
File Dimensione Formato  
22_European Journal of Medicinal Chemistry 139 (2017) 378-389.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 939.33 kB
Formato Adobe PDF
939.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/387828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact