Laser induced cavitation is one of the effective techniques to generate controlled cavitation bubbles, both for basic study and for applica-tions in different fields of engineering and medicine. Unfortunately, control of bubble formation and symmetry is hardly achieved due toa series of concurrent causes. In particular, the need to focus the laser beam at the bubble formation spot leads, in general, to a conicalregion proximal to the light source where conditions are met for plasma breakdown. A finite sized region then exists where the electricfield may fluctuate depending on several disturbing agents, leading to possible plasma fragmentation and plasma intensity variation. Suchirregularities may induce asymmetry in the successive bubble dynamics, a mostly undesired effect if reproducible conditions are soughtfor. In the present paper, the structure of the breakdown plasma and the ensuing bubble dynamics are analyzed by means of high speedimaging and intensity measurements of the shockwave system launched at breakdown. It is found that the parameters of the system canbe tuned to optimize repeatability and sphericity. In particular, symmetric rebound dynamics is achieved almost deterministically when apointlike plasma is generated at the breakdown threshold energy. Spherical symmetry is also favored by a large focusing angle combinedwith a relatively large pulse energy, a process which, however, retains a significant level of stochasticity. Outside these special conditions,the elongated and often fragmented conical plasma shape is found to be correlated with anisotropic and multiple breakdown shockwave

Laser induced cavitation: Plasma generation and breakdown shockwave

F Alves Pereira;
2019

Abstract

Laser induced cavitation is one of the effective techniques to generate controlled cavitation bubbles, both for basic study and for applica-tions in different fields of engineering and medicine. Unfortunately, control of bubble formation and symmetry is hardly achieved due toa series of concurrent causes. In particular, the need to focus the laser beam at the bubble formation spot leads, in general, to a conicalregion proximal to the light source where conditions are met for plasma breakdown. A finite sized region then exists where the electricfield may fluctuate depending on several disturbing agents, leading to possible plasma fragmentation and plasma intensity variation. Suchirregularities may induce asymmetry in the successive bubble dynamics, a mostly undesired effect if reproducible conditions are soughtfor. In the present paper, the structure of the breakdown plasma and the ensuing bubble dynamics are analyzed by means of high speedimaging and intensity measurements of the shockwave system launched at breakdown. It is found that the parameters of the system canbe tuned to optimize repeatability and sphericity. In particular, symmetric rebound dynamics is achieved almost deterministically when apointlike plasma is generated at the breakdown threshold energy. Spherical symmetry is also favored by a large focusing angle combinedwith a relatively large pulse energy, a process which, however, retains a significant level of stochasticity. Outside these special conditions,the elongated and often fragmented conical plasma shape is found to be correlated with anisotropic and multiple breakdown shockwave
2019
Istituto di iNgegneria del Mare - INM (ex INSEAN)
cavitation
plasma
breakdown
shockwave
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/387900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 113
social impact