The mechanism of selenium hydride atomization and the fate of free atoms were investigated in a flame-in-gas-shield atomizer. The spatial distribution of free atoms was estimated from lateral absorbance profiles scanned at various observation heights. Spectroscopic temperature measurements based on atomic absorption at 196.1 and 204.0 nm Se lines were performed at an oxygen flow rate of 20 ml min–1. A maximum temperature of close to 1600 °C was found in the core of the micro-flame. Temperature decreased steeply with distance from the micro-flame to reach 900 and 600 °C, respectively, at observation heights of 5 and 10 mm. Mercury was employed as an analyte to study the physical processes controlling the distribution of analyte atoms. It was found that the hydride is completely atomized by interaction with a cloud of hydrogen radicals before the analyte passes from the zone 2 mm above the top of the atomizer. Free analyte atoms form a cone that narrows with increasing observation height and disappear outside by reaction with molecular oxygen transported to the column of free atoms by local turbulence through the protecting gas shield. Possible ways of improving the performance of the protecting gas shield are suggested.

Mechanism of selenium hydride atomisation, fate of free atoms and temperature in argon shielded, highly fuel rich, hydrogen-oxygen diffusion microflame studied by atomic absorption spectrometry

D'Ulivo A;Lampugnani L;
2002

Abstract

The mechanism of selenium hydride atomization and the fate of free atoms were investigated in a flame-in-gas-shield atomizer. The spatial distribution of free atoms was estimated from lateral absorbance profiles scanned at various observation heights. Spectroscopic temperature measurements based on atomic absorption at 196.1 and 204.0 nm Se lines were performed at an oxygen flow rate of 20 ml min–1. A maximum temperature of close to 1600 °C was found in the core of the micro-flame. Temperature decreased steeply with distance from the micro-flame to reach 900 and 600 °C, respectively, at observation heights of 5 and 10 mm. Mercury was employed as an analyte to study the physical processes controlling the distribution of analyte atoms. It was found that the hydride is completely atomized by interaction with a cloud of hydrogen radicals before the analyte passes from the zone 2 mm above the top of the atomizer. Free analyte atoms form a cone that narrows with increasing observation height and disappear outside by reaction with molecular oxygen transported to the column of free atoms by local turbulence through the protecting gas shield. Possible ways of improving the performance of the protecting gas shield are suggested.
2002
Istituto per i Processi Chimico-Fisici - IPCF
Spettrometria
Atomizzatori
Idruri
Analisi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact