Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared to our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that although the number of carbon allocation studies over the last 10 years has substantially increased, some background processes are still insufficiently understood, and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are: (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilisation of non-structural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration, and improved resource uptake in order to better account for changing environmental conditions.

Forest carbon allocation modelling under climate change

Alessio Collalti;
2019

Abstract

Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared to our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that although the number of carbon allocation studies over the last 10 years has substantially increased, some background processes are still insufficiently understood, and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are: (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilisation of non-structural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration, and improved resource uptake in order to better account for changing environmental conditions.
2019
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
carbon partitioning
fixed ratio
natural resources
natural disturbances
non-structural carbohydrates
reproduction
mycorrhiza
repair and defence function
temporal resolution
model calibration
File in questo prodotto:
File Dimensione Formato  
prod_407858-doc_143006.pdf

solo utenti autorizzati

Descrizione: Forest carbon allocation modelling under climate
Tipologia: Versione Editoriale (PDF)
Dimensione 4.12 MB
Formato Adobe PDF
4.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/387953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? ND
social impact