The manuscript details the preparation and characterization of binary blends of polyamide 11 (PA 11) and poly(butylene succinate) (PBS), with PA 11 as the major component. The blends are fully bio-based, since both components are produced from renewable resources. In addition, PBS is also biodegradable and compostable, contrarily to PA 11. In the analyzed composition range (up to 40 m% PBS), the two polymers are not miscible, and the blends display two separate glass transitions. The PA 11/PBS blends exhibit a droplet-matrix morphology, with uniform dispersion within the matrix, and some interfacial adhesion between the matrix and the dispersed droplets. Infrared spectroscopy indicates the possible interaction between the hydrogens of the amide groups of PA 11 chains and the carbonyl groups of PBS, which provides the compatibilization of the components. The analyzed blends show mechanical properties that are comparable to neat PA 11, with the benefit of reduced material costs attained by addition of biodegradable PBS.

Polyamide 11/Poly(butylene succinate) Bio-Based Polymer Blends

Maria Laura Di Lorenzo;Alessandra Longo;
2019

Abstract

The manuscript details the preparation and characterization of binary blends of polyamide 11 (PA 11) and poly(butylene succinate) (PBS), with PA 11 as the major component. The blends are fully bio-based, since both components are produced from renewable resources. In addition, PBS is also biodegradable and compostable, contrarily to PA 11. In the analyzed composition range (up to 40 m% PBS), the two polymers are not miscible, and the blends display two separate glass transitions. The PA 11/PBS blends exhibit a droplet-matrix morphology, with uniform dispersion within the matrix, and some interfacial adhesion between the matrix and the dispersed droplets. Infrared spectroscopy indicates the possible interaction between the hydrogens of the amide groups of PA 11 chains and the carbonyl groups of PBS, which provides the compatibilization of the components. The analyzed blends show mechanical properties that are comparable to neat PA 11, with the benefit of reduced material costs attained by addition of biodegradable PBS.
2019
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
polyamide 11
poly(butylene succinate)
polymer blends
bio-based polymers
biodegradable polymers
mechanical properties
thermal analysis
morphology
spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/388111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact