MicroRNAs (miRNAs), a class of non-coding RNAs, seem to play a key role in complex diseases like multiple sclerosis (MS), as well as in many cognitive functions associated with the disease. In a previous cross-sectional evaluation on pediatric MS (PedMS) patients, the expression of some miRNAs and their target genes were found to be associated with the scores of some neuropsychiatric tests, thus suggesting that they may be involved in early processes of cognitive impairment. To verify these data, we asked the same patients to be re-evaluated after a 1-year interval; unfortunately, only nine of them agreed to this further clinical and molecular analysis. The main results showed that 13 dierentially expressed miRNAs discriminated the two time-points. Among them, the expression of miR-182-5p, miR-320a-3p, miR-744-5p and miR-192-5p significantly correlated with the attention and information processing speed performances, whereas the expression of miR-182-5p, miR-451a, miR-4742-3p and miR-320a-3p correlated with the expressive language performances. The analysis of mRNA expression uncovered 58 predicted and/or validated miRNA-target pairs, including 23 target genes, some of them already associated with cognitive impairment, such as the transducing beta like 1 X-linked receptor-1 gene (TBL1XR1), correlated to disorders of neurodevelopment; the Snf2 related CREBBP activator protein gene (SRCAP) that was found implicated in a rare form of dementia; and the glia maturation factor beta gene (GMFB), which has been reported to be implicated in neurodegeneration and neuroinflammation. No molecular pathways involving the most targeted genes survived the adjustment for multiple data. Although preliminary, these findings showed the feasibility of the methods also applied to longitudinal investigations, as well as the reliability of the obtained results. These findings should be confirmed in larger PedMS cohorts in order to identify early markers of cognitive impairment, towards which more ecient therapeutic eorts can be addressed.

A Pilot Longitudinal Evaluation of MicroRNAs for Monitoring the Cognitive Impairment in Pediatric Multiple Sclerosis

Nicoletta Nuzziello;Arianna Consiglio;Flavio Licciulli;Sabino Liuni;Maria Liguori
2020

Abstract

MicroRNAs (miRNAs), a class of non-coding RNAs, seem to play a key role in complex diseases like multiple sclerosis (MS), as well as in many cognitive functions associated with the disease. In a previous cross-sectional evaluation on pediatric MS (PedMS) patients, the expression of some miRNAs and their target genes were found to be associated with the scores of some neuropsychiatric tests, thus suggesting that they may be involved in early processes of cognitive impairment. To verify these data, we asked the same patients to be re-evaluated after a 1-year interval; unfortunately, only nine of them agreed to this further clinical and molecular analysis. The main results showed that 13 dierentially expressed miRNAs discriminated the two time-points. Among them, the expression of miR-182-5p, miR-320a-3p, miR-744-5p and miR-192-5p significantly correlated with the attention and information processing speed performances, whereas the expression of miR-182-5p, miR-451a, miR-4742-3p and miR-320a-3p correlated with the expressive language performances. The analysis of mRNA expression uncovered 58 predicted and/or validated miRNA-target pairs, including 23 target genes, some of them already associated with cognitive impairment, such as the transducing beta like 1 X-linked receptor-1 gene (TBL1XR1), correlated to disorders of neurodevelopment; the Snf2 related CREBBP activator protein gene (SRCAP) that was found implicated in a rare form of dementia; and the glia maturation factor beta gene (GMFB), which has been reported to be implicated in neurodegeneration and neuroinflammation. No molecular pathways involving the most targeted genes survived the adjustment for multiple data. Although preliminary, these findings showed the feasibility of the methods also applied to longitudinal investigations, as well as the reliability of the obtained results. These findings should be confirmed in larger PedMS cohorts in order to identify early markers of cognitive impairment, towards which more ecient therapeutic eorts can be addressed.
2020
Istituto di Tecnologie Biomediche - ITB
pediatric multiple sclerosis; microRNA; gene target; high-throughput next-generation sequencing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/388207
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact