Transmembrane proton translocation in the photosynthetic membranes of the purple bacterium Rhodobacter sphaeroides is driven by light and performed by two transmembrane complexes; the photosynthetic reaction center and the ubiquinol-cytochrome c oxidoreductase complex, coupled by two mobile electron carriers; the cytochrome and the quinone. This paper focuses on the kinetics and thermodynamics of the interaction between the lipophylic electron carrier ubiquinone-10 and the photosynthetic enzyme reconstituted in liposomes. The collected data were simulated with an existing recognized kinetic scheme and the kinetic constants of the uptake (7.2 x 107 M(-1) x s(-1)) and release (40 s(-1)) processes of the ligand were inferred. The results obtained for the quinone release kinetic constant are comparable to the rate of the charge recombination reaction from the state D(+)QA(-). Values for the kinetic constants are discussed as part of the overall photocycle, suggesting that its bottleneck may not be the quinone uptake reaction in agreement with a previous report.

Kinetics of the Quinone Binding reaction at the QB site of Reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomes

Milano F;Trotta M
2003

Abstract

Transmembrane proton translocation in the photosynthetic membranes of the purple bacterium Rhodobacter sphaeroides is driven by light and performed by two transmembrane complexes; the photosynthetic reaction center and the ubiquinol-cytochrome c oxidoreductase complex, coupled by two mobile electron carriers; the cytochrome and the quinone. This paper focuses on the kinetics and thermodynamics of the interaction between the lipophylic electron carrier ubiquinone-10 and the photosynthetic enzyme reconstituted in liposomes. The collected data were simulated with an existing recognized kinetic scheme and the kinetic constants of the uptake (7.2 x 107 M(-1) x s(-1)) and release (40 s(-1)) processes of the ligand were inferred. The results obtained for the quinone release kinetic constant are comparable to the rate of the charge recombination reaction from the state D(+)QA(-). Values for the kinetic constants are discussed as part of the overall photocycle, suggesting that its bottleneck may not be the quinone uptake reaction in agreement with a previous report.
2003
Istituto per i Processi Chimico-Fisici - IPCF
liposomes
quinone
reaction center
File in questo prodotto:
File Dimensione Formato  
prod_39195-doc_118632.pdf

solo utenti autorizzati

Descrizione: Kinetics of the quinone binding reaction at the QB site of reaction centers
Tipologia: Versione Editoriale (PDF)
Dimensione 385.48 kB
Formato Adobe PDF
385.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 43
social impact